These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19014407)

  • 1. Aquaglyceroporins: ancient channels for metalloids.
    Bhattacharjee H; Mukhopadhyay R; Thiyagarajan S; Rosen BP
    J Biol; 2008 Nov; 7(9):33. PubMed ID: 19014407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquaglyceroporins: generalized metalloid channels.
    Mukhopadhyay R; Bhattacharjee H; Rosen BP
    Biochim Biophys Acta; 2014 May; 1840(5):1583-91. PubMed ID: 24291688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Major intrinsic proteins and arsenic transport in plants: new players and their potential role.
    Bienert GP; Jahn TP
    Adv Exp Med Biol; 2010; 679():111-25. PubMed ID: 20666228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out.
    Bienert GP; Schüssler MD; Jahn TP
    Trends Biochem Sci; 2008 Jan; 33(1):20-6. PubMed ID: 18068370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic transport by zebrafish aquaglyceroporins.
    Hamdi M; Sanchez MA; Beene LC; Liu Q; Landfear SM; Rosen BP; Liu Z
    BMC Mol Biol; 2009 Nov; 10():104. PubMed ID: 19939263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic and antimony transporters in eukaryotes.
    Maciaszczyk-Dziubinska E; Wawrzycka D; Wysocki R
    Int J Mol Sci; 2012; 13(3):3527-3548. PubMed ID: 22489166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquaglyceroporins and metalloid transport: implications in human diseases.
    Bhattacharjee H; Rosen BP; Mukhopadhyay R
    Handb Exp Pharmacol; 2009; (190):309-25. PubMed ID: 19096785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of antimonite and antimonate by arsenic hyperaccumulator Pteris vittata: Effects of chemical analogs and transporter inhibitor.
    Tisarum R; Chen Y; Dong X; Lessl JT; Ma LQ
    Environ Pollut; 2015 Nov; 206():49-55. PubMed ID: 26142750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypanosoma brucei aquaglyceroporins facilitate the uptake of arsenite and antimonite in a pH dependent way.
    Uzcátegui NL; Figarella K; Bassarak B; Meza NW; Mukhopadhyay R; Ramirez JL; Duszenko M
    Cell Physiol Biochem; 2013; 32(4):880-8. PubMed ID: 24217645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of arsenic and antimony transporter major intrinsic proteins from the genomes of crop plants.
    Azad AK; Ahmed J; Alum MA; Hasan MM; Ishikawa T; Sawa Y
    Int J Biol Macromol; 2018 Feb; 107(Pt B):2630-2642. PubMed ID: 29080824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuolar Transporters for Cadmium and Arsenic in Plants and their Applications in Phytoremediation and Crop Development.
    Zhang J; Martinoia E; Lee Y
    Plant Cell Physiol; 2018 Jul; 59(7):1317-1325. PubMed ID: 29361141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport.
    Pommerrenig B; Diehn TA; Bienert GP
    Plant Sci; 2015 Sep; 238():212-27. PubMed ID: 26259189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic transport in prokaryotes and eukaryotic microbes.
    Rosen BP; Tamás MJ
    Adv Exp Med Biol; 2010; 679():47-55. PubMed ID: 20666223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metalloid transport by aquaglyceroporins: consequences in the treatment of human diseases.
    Mukhopadhyay R; Beitz E
    Adv Exp Med Biol; 2010; 679():57-69. PubMed ID: 20666224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Molecular Mechanisms to Reduce Arsenic in Crops.
    Lindsay ER; Maathuis FJM
    Trends Plant Sci; 2017 Dec; 22(12):1016-1026. PubMed ID: 29056439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of nitric oxide (NO) in plant responses to metalloids.
    Kolbert Z; Ördög A
    J Hazard Mater; 2021 Oct; 420():126606. PubMed ID: 34271449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The involvement of aquaglyceroporins in transport of boron in barley roots.
    Fitzpatrick KL; Reid RJ
    Plant Cell Environ; 2009 Oct; 32(10):1357-65. PubMed ID: 19552667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport routes of metalloids into and out of the cell: a review of the current knowledge.
    Zangi R; Filella M
    Chem Biol Interact; 2012 Apr; 197(1):47-57. PubMed ID: 22370390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels.
    Wallace IS; Roberts DM
    Biochemistry; 2005 Dec; 44(51):16826-34. PubMed ID: 16363796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins.
    Wallace IS; Choi WG; Roberts DM
    Biochim Biophys Acta; 2006 Aug; 1758(8):1165-75. PubMed ID: 16716251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.