These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19014713)

  • 1. Use of machine learning algorithms to classify binary protein sequences as highly-designable or poorly-designable.
    Peto M; Kloczkowski A; Honavar V; Jernigan RL
    BMC Bioinformatics; 2008 Nov; 9():487. PubMed ID: 19014713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of the relationship between topology and designability of conformations.
    Leelananda SP; Towfic F; Jernigan RL; Kloczkowski A
    J Chem Phys; 2011 Jun; 134(23):235101. PubMed ID: 21702580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of training datasets on support vector machine prediction of protein-protein interactions.
    Lo SL; Cai CZ; Chen YZ; Chung MC
    Proteomics; 2005 Mar; 5(4):876-84. PubMed ID: 15717327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Designability of Small Proteins from Graph Features of Contact Maps.
    Leelananda SP; Jernigan RL; Kloczkowski A
    J Comput Biol; 2016 May; 23(5):400-11. PubMed ID: 27159634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of highly designable protein-backbone conformations in an off-lattice model.
    Miller J; Zeng C; Wingreen NS; Tang C
    Proteins; 2002 Jun; 47(4):506-12. PubMed ID: 12001229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended particle swarm optimisation method for folding protein on triangular lattice.
    Guo Y; Wu Z; Wang Y; Wang Y
    IET Syst Biol; 2016 Feb; 10(1):30-3. PubMed ID: 26816397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric and statistical properties of the mean-field hydrophobic-polar model, the large-small model, and real protein sequences.
    Shih CT; Su ZY; Gwan JF; Hao BL; Hsieh CH; Lo JL; Lee HC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041923. PubMed ID: 12005889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designable structures are easy to unfold.
    Dias CL; Grant M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):042902. PubMed ID: 17155116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A replica exchange Monte Carlo algorithm for protein folding in the HP model.
    Thachuk C; Shmygelska A; Hoos HH
    BMC Bioinformatics; 2007 Sep; 8():342. PubMed ID: 17875212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two multi-classification strategies used on SVM to predict protein structural classes by using auto covariance.
    Wu J; Li YZ; Li ML; Yu LZ
    Interdiscip Sci; 2009 Dec; 1(4):315-9. PubMed ID: 20640811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing folding codes for proteins and polymers.
    Chan HS; Dill KA
    Proteins; 1996 Mar; 24(3):335-44. PubMed ID: 8778780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique optimal foldings of proteins on a triangular lattice.
    Li Z; Zhang X; Chen L
    Appl Bioinformatics; 2005; 4(2):105-16. PubMed ID: 16128612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A test of lattice protein folding algorithms.
    Yue K; Fiebig KM; Thomas PD; Chan HS; Shakhnovich EI; Dill KA
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):325-9. PubMed ID: 7816842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BioBayesNet: a web server for feature extraction and Bayesian network modeling of biological sequence data.
    Nikolajewa S; Pudimat R; Hiller M; Platzer M; Backofen R
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W688-93. PubMed ID: 17537825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of lipid-binding sites based on support vector machine and position specific scoring matrix.
    Xiong W; Guo Y; Li M
    Protein J; 2010 Aug; 29(6):427-31. PubMed ID: 20658312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation and enumeration of compact conformations on the two-dimensional triangular and three-dimensional fcc lattices.
    Peto M; Sen TZ; Jernigan RL; Kloczkowski A
    J Chem Phys; 2007 Jul; 127(4):044101. PubMed ID: 17672675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profile-based direct kernels for remote homology detection and fold recognition.
    Rangwala H; Karypis G
    Bioinformatics; 2005 Dec; 21(23):4239-47. PubMed ID: 16188929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.