BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 19014952)

  • 21. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering.
    Bilgen B; Sucosky P; Neitzel GP; Barabino GA
    Biotechnol Bioeng; 2006 Dec; 95(6):1009-22. PubMed ID: 17031866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress.
    Yeatts AB; Fisher JP
    Bone; 2011 Feb; 48(2):171-81. PubMed ID: 20932947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of cell cultures in perfusion bioreactors.
    Yan X; Bergstrom DJ; Chen XB
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2568-75. PubMed ID: 22772976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational fluid dynamics for improved bioreactor design and 3D culture.
    Hutmacher DW; Singh H
    Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions.
    Stephens JS; Cooper JA; Phelan FR; Dunkers JP
    Biotechnol Bioeng; 2007 Jul; 97(4):952-61. PubMed ID: 17149772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mathematical modelling of cell layer growth in a hollow fibre bioreactor.
    Chapman LAC; Whiteley JP; Byrne HM; Waters SL; Shipley RJ
    J Theor Biol; 2017 Apr; 418():36-56. PubMed ID: 28089874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluid mechanics of a spinner-flask bioreactor.
    Sucosky P; Osorio DF; Brown JB; Neitzel GP
    Biotechnol Bioeng; 2004 Jan; 85(1):34-46. PubMed ID: 14705010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue growth in a rotating bioreactor. Part II: fluid flow and nutrient transport problems.
    Cummings LJ; Waters SL
    Math Med Biol; 2007 Jun; 24(2):169-208. PubMed ID: 17043081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.
    Shakhawath Hossain M; Bergstrom DJ; Chen XB
    Biotechnol Bioeng; 2015 Dec; 112(12):2601-10. PubMed ID: 26061385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational modelling of the scaffold-free chondrocyte regeneration: a two-way coupling between the cell growth and local fluid flow and nutrient concentration.
    Hossain MS; Bergstrom DJ; Chen XB
    Biomech Model Mechanobiol; 2015 Nov; 14(6):1217-25. PubMed ID: 25804699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiphase modelling of the effect of fluid shear stress on cell yield and distribution in a hollow fibre membrane bioreactor.
    Pearson NC; Waters SL; Oliver JM; Shipley RJ
    Biomech Model Mechanobiol; 2015 Apr; 14(2):387-402. PubMed ID: 25212097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A multiphysics/multiscale 2D numerical simulation of scaffold-based cartilage regeneration under interstitial perfusion in a bioreactor.
    Sacco R; Causin P; Zunino P; Raimondi MT
    Biomech Model Mechanobiol; 2011 Jul; 10(4):577-89. PubMed ID: 20865436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluid and mass transport modelling to drive the design of cell-packed hollow fibre bioreactors for tissue engineering applications.
    Shipley RJ; Waters SL
    Math Med Biol; 2012 Dec; 29(4):329-59. PubMed ID: 22076984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioreactors for tissue engineering.
    Chen HC; Hu YC
    Biotechnol Lett; 2006 Sep; 28(18):1415-23. PubMed ID: 16955350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution.
    Lappa M
    Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical analysis of engineered cartilage oxygenation: influence of construct thickness and media flow rate.
    Pierre J; Gemmiti CV; Kolambkar YM; Oddou C; Guldberg RE
    Biomech Model Mechanobiol; 2008 Dec; 7(6):497-510. PubMed ID: 17999099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of diffusivity and pressure drop in flow-through and parallel-flow bioreactors during tissue regeneration.
    Podichetty JT; Dhane DV; Madihally SV
    Biotechnol Prog; 2012 Jul; 28(4):1045-54. PubMed ID: 22473960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applying shear stress to endothelial cells in a new perfusion chamber: hydrodynamic analysis.
    Anisi F; Salehi-Nik N; Amoabediny G; Pouran B; Haghighipour N; Zandieh-Doulabi B
    J Artif Organs; 2014 Dec; 17(4):329-36. PubMed ID: 25213200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A perfusion bioreactor for engineering bone constructs: an in vitro and in vivo study.
    David B; Bonnefont-Rousselot D; Oudina K; Degat MC; Deschepper M; Viateau V; Bensidhoum M; Oddou C; Petite H
    Tissue Eng Part C Methods; 2011 May; 17(5):505-16. PubMed ID: 21171934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mathematical model for bone tissue regeneration inside a specific type of scaffold.
    Sanz-Herrera JA; Garcia-Aznar JM; Doblare M
    Biomech Model Mechanobiol; 2008 Oct; 7(5):355-66. PubMed ID: 17530310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.