BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19015324)

  • 1. A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements.
    Mittler G; Butter F; Mann M
    Genome Res; 2009 Feb; 19(2):284-93. PubMed ID: 19015324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A SILAC-based screen for Methyl-CpG binding proteins identifies RBP-J as a DNA methylation and sequence-specific binding protein.
    Bartels SJ; Spruijt CG; Brinkman AB; Jansen PW; Vermeulen M; Stunnenberg HG
    PLoS One; 2011; 6(10):e25884. PubMed ID: 21991380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unbiased RNA-protein interaction screen by quantitative proteomics.
    Butter F; Scheibe M; Mörl M; Mann M
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10626-31. PubMed ID: 19541640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable isotope labeling by amino acids in cell culture for quantitative proteomics.
    Ong SE; Mann M
    Methods Mol Biol; 2007; 359():37-52. PubMed ID: 17484109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the Global Changes in SH2 Binding Properties Using Mass Spectrometry Supported by Quantitative Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technique.
    Sobota RM
    Methods Mol Biol; 2017; 1555():419-428. PubMed ID: 28092047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA affinity capture and protein profiling by SELDI-TOF mass spectrometry: effect of DNA methylation.
    Bane TK; LeBlanc JF; Lee TD; Riggs AD
    Nucleic Acids Res; 2002 Jul; 30(14):e69. PubMed ID: 12136117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of an Alu repetitive DNA binding protein and effect of CpG methylation on binding to its recognition sequence.
    Cox GS; Gutkin DW; Haas MJ; Cosgrove DE
    Biochim Biophys Acta; 1998 Mar; 1396(1):67-87. PubMed ID: 9524225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC).
    Amanchy R; Kalume DE; Iwahori A; Zhong J; Pandey A
    J Proteome Res; 2005; 4(5):1661-71. PubMed ID: 16212419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC).
    Ong SE; Mann M
    Nat Protoc; 2006; 1(6):2650-60. PubMed ID: 17406521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of stable isotope labeling by amino acids in cell culture (SILAC) for phosphotyrosine protein identification and quantitation.
    Zhang G; Neubert TA
    Methods Mol Biol; 2009; 527():79-92, xi. PubMed ID: 19241007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC.
    Ong SE; Mittler G; Mann M
    Nat Methods; 2004 Nov; 1(2):119-26. PubMed ID: 15782174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics.
    Hoedt E; Zhang G; Neubert TA
    Adv Exp Med Biol; 2019; 1140():531-539. PubMed ID: 31347069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective correction of experimental errors in quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC).
    Park SS; Wu WW; Zhou Y; Shen RF; Martin B; Maudsley S
    J Proteomics; 2012 Jun; 75(12):3720-32. PubMed ID: 22575385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable isotope labeling by amino acids in cell culture (SILAC).
    Gruhler S; Kratchmarova I
    Methods Mol Biol; 2008; 424():101-11. PubMed ID: 18369856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative proteomics using stable isotope labeling with amino acids in cell culture.
    Harsha HC; Molina H; Pandey A
    Nat Protoc; 2008; 3(3):505-16. PubMed ID: 18323819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Protein-(Hydroxy)Methylated DNA Interactions Using Quantitative Interaction Proteomics.
    Sequeira VM; Vermeulen M
    Methods Mol Biol; 2021; 2272():209-224. PubMed ID: 34009616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Substrate Trapping for the Detection of Transient Protein Interactions.
    Duda JM; Thomas SN
    Methods Mol Biol; 2023; 2603():219-234. PubMed ID: 36370283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics.
    Geiger T; Wisniewski JR; Cox J; Zanivan S; Kruger M; Ishihama Y; Mann M
    Nat Protoc; 2011 Feb; 6(2):147-57. PubMed ID: 21293456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics.
    Hoedt E; Zhang G; Neubert TA
    Adv Exp Med Biol; 2014; 806():93-106. PubMed ID: 24952180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The intracisternal A-particle upstream element interacts with transcription factor YY1 to activate transcription: pleiotropic effects of YY1 on distinct DNA promoter elements.
    Satyamoorthy K; Park K; Atchison ML; Howe CC
    Mol Cell Biol; 1993 Nov; 13(11):6621-8. PubMed ID: 8413258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.