These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19015518)

  • 1. Amplified effect of Brownian motion in bacterial near-surface swimming.
    Li G; Tam LK; Tang JX
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18355-9. PubMed ID: 19015518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of swimming bacteria near a solid surface.
    Li G; Bensson J; Nisimova L; Munger D; Mahautmr P; Tang JX; Maxey MR; Brun YV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041932. PubMed ID: 22181200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion.
    Li G; Tang JX
    Phys Rev Lett; 2009 Aug; 103(7):078101. PubMed ID: 19792689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helical motion of the cell body enhances Caulobacter crescentus motility.
    Liu B; Gulino M; Morse M; Tang JX; Powers TR; Breuer KS
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11252-6. PubMed ID: 25053810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The elastic properties of the caulobacter crescentus adhesive holdfast are dependent on oligomers of N-acetylglucosamine.
    Li G; Smith CS; Brun YV; Tang JX
    J Bacteriol; 2005 Jan; 187(1):257-65. PubMed ID: 15601710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuation analysis of Caulobacter crescentus adhesion.
    Alipour-Assiabi E; Li G; Powers TR; Tang JX
    Biophys J; 2006 Mar; 90(6):2206-12. PubMed ID: 16361338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swimming in circles: motion of bacteria near solid boundaries.
    Lauga E; DiLuzio WR; Whitesides GM; Stone HA
    Biophys J; 2006 Jan; 90(2):400-12. PubMed ID: 16239332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular advective-diffusion drives the emergence of bacterial surface colonization patterns and heterogeneity.
    Rossy T; Nadell CD; Persat A
    Nat Commun; 2019 Jun; 10(1):2471. PubMed ID: 31171786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P; Spormann AM
    J Bacteriol; 2004 Dec; 186(24):8254-66. PubMed ID: 15576774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The curved shape of Caulobacter crescentus enhances surface colonization in flow.
    Persat A; Stone HA; Gitai Z
    Nat Commun; 2014 May; 5():3824. PubMed ID: 24806788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluid-dynamic interpretation of the asymmetric motion of singly flagellated bacteria swimming close to a boundary.
    Goto T; Nakata K; Baba K; Nishimura M; Magariyama Y
    Biophys J; 2005 Dec; 89(6):3771-9. PubMed ID: 16150964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular adsorption steers bacterial swimming at the air/water interface.
    Morse M; Huang A; Li G; Maxey MR; Tang JX
    Biophys J; 2013 Jul; 105(1):21-8. PubMed ID: 23823220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic entrapment of bacteria swimming near a solid surface.
    Giacché D; Ishikawa T; Yamaguchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056309. PubMed ID: 21230578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holdfast spreading and thickening during Caulobacter crescentus attachment to surfaces.
    Li G; Brun YV; Tang JX
    BMC Microbiol; 2013 Jun; 13():139. PubMed ID: 23777390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-propelling and rolling of a sessile-motile aggregate of the bacterium Caulobacter crescentus.
    Zeng Y; Liu B
    Commun Biol; 2020 Oct; 3(1):587. PubMed ID: 33067555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of surface adhesion in Caulobacter crescentus.
    Bodenmiller D; Toh E; Brun YV
    J Bacteriol; 2004 Mar; 186(5):1438-47. PubMed ID: 14973013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental verification of near-wall hindered diffusion for the Brownian motion of nanoparticles using evanescent wave microscopy.
    Banerjee A; Kihm KD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):042101. PubMed ID: 16383445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flagellar Perturbations Activate Adhesion through Two Distinct Pathways in
    Hershey DM; Fiebig A; Crosson S
    mBio; 2021 Feb; 12(1):. PubMed ID: 33563824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of
    Fiebig A
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31010900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion of single bacterial cells in the micronewton range.
    Tsang PH; Li G; Brun YV; Freund LB; Tang JX
    Proc Natl Acad Sci U S A; 2006 Apr; 103(15):5764-8. PubMed ID: 16585522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.