BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 19015576)

  • 1. Measurement of the hyperelastic properties of tissue slices with tumour inclusion.
    O'Hagan JJ; Samani A
    Phys Med Biol; 2008 Dec; 53(24):7087-106. PubMed ID: 19015576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples.
    O'Hagan JJ; Samani A
    Phys Med Biol; 2009 Apr; 54(8):2557-69. PubMed ID: 19349660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the hyperelastic properties of ex vivo brain tissue slices.
    Kaster T; Sack I; Samani A
    J Biomech; 2011 Apr; 44(6):1158-63. PubMed ID: 21329927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inverse problem solution for measuring the elastic modulus of intact ex vivo breast tissue tumours.
    Samani A; Plewes D
    Phys Med Biol; 2007 Mar; 52(5):1247-60. PubMed ID: 17301452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of lung hyperelastic properties using inverse finite element approach.
    Sadeghi Naini A; Patel RV; Samani A
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2852-9. PubMed ID: 21724500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples.
    Samani A; Zubovits J; Plewes D
    Phys Med Biol; 2007 Mar; 52(6):1565-76. PubMed ID: 17327649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A constrained reconstruction technique of hyperelasticity parameters for breast cancer assessment.
    Mehrabian H; Campbell G; Samani A
    Phys Med Biol; 2010 Dec; 55(24):7489-508. PubMed ID: 21098922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical 3-D finite element modeling of the human breast using MRI data.
    Samani A; Bishop J; Yaffe MJ; Plewes DB
    IEEE Trans Med Imaging; 2001 Apr; 20(4):271-9. PubMed ID: 11370894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo.
    Moerman KM; Holt CA; Evans SL; Simms CK
    J Biomech; 2009 May; 42(8):1150-3. PubMed ID: 19362312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanical model to compute elastic modulus of tissues for harmonic motion imaging.
    Shan B; Pelegri AA; Maleke C; Konofagou EE
    J Biomech; 2008 Jul; 41(10):2150-8. PubMed ID: 18571182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural fingertip model for simulating of the biomechanics of tactile sensation.
    Wu JZ; Dong RG; Rakheja S; Schopper AW; Smutz WP
    Med Eng Phys; 2004 Mar; 26(2):165-75. PubMed ID: 15036184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative viscoelastic parameters measured by harmonic motion imaging.
    Vappou J; Maleke C; Konofagou EE
    Phys Med Biol; 2009 Jun; 54(11):3579-94. PubMed ID: 19454785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechano-acoustic indentor system for in vivo measurement of nonlinear elastic properties of soft tissue.
    Koo TK; Cohen JH; Zheng Y
    J Manipulative Physiol Ther; 2011 Nov; 34(9):584-93. PubMed ID: 21986306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments.
    Roan E; Vemaganti K
    J Biomech Eng; 2007 Jun; 129(3):450-6. PubMed ID: 17536913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic characterization of soft tissue from dynamic finite element models.
    Eskandari H; Salcudean SE; Rohling R; Ohayon J
    Phys Med Biol; 2008 Nov; 53(22):6569-90. PubMed ID: 18978443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: inverse method, ex vivo and in vivo experiments.
    Jiang Y; Li GY; Qian LX; Hu XD; Liu D; Liang S; Cao Y
    Med Image Anal; 2015 Feb; 20(1):97-111. PubMed ID: 25476413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frictional contact mechanics methods for soft materials: application to tracking breast cancers.
    Chung JH; Rajagopal V; Laursen TA; Nielsen PM; Nash MP
    J Biomech; 2008; 41(1):69-77. PubMed ID: 17727862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a more realistic biomechanical modelling of breast malignant tumours.
    Wessel C; Schnabel JA; Brady M
    Phys Med Biol; 2012 Feb; 57(3):631-48. PubMed ID: 22241544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robotic indenter for minimally invasive measurement and characterization of soft tissue response.
    Samur E; Sedef M; Basdogan C; Avtan L; Duzgun O
    Med Image Anal; 2007 Aug; 11(4):361-73. PubMed ID: 17509927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.