These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19015691)

  • 1. Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch.
    Wang H; Pan Y; Rollins AM
    Opt Lett; 2008 Nov; 33(22):2632-4. PubMed ID: 19015691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator.
    Zhang J; Nelson JS; Chen Z
    Opt Lett; 2005 Jan; 30(2):147-9. PubMed ID: 15675695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-fiber common-path optical coherence tomography using a conical-tip fiber.
    Tan KM; Mazilu M; Chow TH; Lee WM; Taguichi K; Ng BK; Sibbett W; Herrington CS; Brown CT; Dholakia K
    Opt Express; 2009 Feb; 17(4):2375-84. PubMed ID: 19219141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Optical-fiber-based Mueller optical coherence tomography".
    Park BH; Pierce MC; de Boer JF
    Opt Lett; 2004 Dec; 29(24):2873-4; discussion 2875-7. PubMed ID: 15645809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography.
    Wang Y; Tomov I; Nelson JS; Chen Z; Lim H; Wise F
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1492-9. PubMed ID: 16134843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography.
    Yao X; Gan Y; Marboe CC; Hendon CP
    J Biomed Opt; 2016 Jun; 21(6):61006. PubMed ID: 27001162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation.
    Yasuno Y; Endo T; Makita S; Aoki G; Itoh M; Yatagai T
    J Biomed Opt; 2006; 11(1):014014. PubMed ID: 16526891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing.
    Oh WY; Yun SH; Vakoc BJ; Shishkov M; Desjardins AE; Park BH; de Boer JF; Tearney GJ; Bouma BE
    Opt Express; 2008 Jan; 16(2):1096-103. PubMed ID: 18542183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherence tomography system with no high-precision scanning stage and stage controller.
    Lo YL; Kuo CI; Chuang CH; Yan ZZ
    Appl Opt; 2004 Jul; 43(21):4142-9. PubMed ID: 15291056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alignment analyses of a galvanometer-based scanner in free-space Fourier domain optical coherence tomography.
    Yuan Q; Zhu D; Gao Z
    Appl Opt; 2015 Nov; 54(32):9554-62. PubMed ID: 26560786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography.
    Sharma U; Kang JU
    Rev Sci Instrum; 2007 Nov; 78(11):113102. PubMed ID: 18052460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fiber-optic-bundle-based optical coherence tomography.
    Xie T; Mukai D; Guo S; Brenner M; Chen Z
    Opt Lett; 2005 Jul; 30(14):1803-5. PubMed ID: 16092351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer.
    Lee KS; Akcay AC; Delemos T; Clarkson E; Rolland JP
    Appl Opt; 2005 Jul; 44(19):4009-22. PubMed ID: 16004048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-channel spectral-domain optical-coherence tomography system based on 3 × 3 fiber coupler for extended imaging range.
    Dai C; Fan S; Chai X; Li Y; Ren Q; Xi P; Zhou C
    Appl Opt; 2014 Aug; 53(24):5375-9. PubMed ID: 25321108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye.
    Jeong K; Peng L; Turek JJ; Melloch MR; Nolte DD
    Appl Opt; 2005 Apr; 44(10):1798-805. PubMed ID: 15813515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast scanning transmissive delay line for optical coherence tomography.
    Rosa CC; Rogers J; Podoleanu AG
    Opt Lett; 2005 Dec; 30(24):3263-5. PubMed ID: 16389799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex conjugate artifact-free adaptive optics optical coherence tomography of in vivo human optic nerve head.
    Kim DY; Werner JS; Zawadzki RJ
    J Biomed Opt; 2012 Dec; 17(12):126005. PubMed ID: 23208216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence.
    Kaspers OP; Sterenborg HJ; Amelink A
    Appl Opt; 2008 Jan; 47(3):365-71. PubMed ID: 18204723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography.
    Jaillon F; Makita S; Yabusaki M; Yasuno Y
    Opt Express; 2010 Jan; 18(2):1358-72. PubMed ID: 20173963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography.
    Wang H; Rollins AM
    Appl Opt; 2007 Apr; 46(10):1787-94. PubMed ID: 17356623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.