These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19016504)

  • 1. Continuous flow assay for the simultaneous measurement of the electrophoretic mobility, catalytic activity and its variation over time of individual molecules of Escherichia coli beta-galactosidase.
    Craig DB; Nichols ER
    Electrophoresis; 2008 Nov; 29(21):4298-303. PubMed ID: 19016504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the differences in electrophoretic mobilities of individual molecules of E. coli beta-galactosidase provides insight into structural differences which underlie enzyme microheterogeneity.
    Nichols ER; Craig DB
    Electrophoresis; 2008 Nov; 29(20):4257-69. PubMed ID: 18924101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of alteration of translation error rate on enzyme microheterogeneity as assessed by variation in single molecule electrophoretic mobility and catalytic activity.
    Nichols ER; Shadabi E; Craig DB
    Biochem Cell Biol; 2009 Jun; 87(3):517-29. PubMed ID: 19448745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic studies of unmodified individual Escherichia coli beta-galactosidase molecules in free solution.
    Craig DB; Haslam AM; Coombs JM; Nichols ER
    Biochem Cell Biol; 2010 Jun; 88(3):451-8. PubMed ID: 20555387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational change in individual enzyme molecules.
    Crawford JJ; Itzkow F; MacLean J; Craig DB
    Biochem Cell Biol; 2015 Dec; 93(6):611-8. PubMed ID: 26529308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization of beta-galactosidase does not reduce the range of activity of individual molecules.
    Shoemaker GK; Juers DH; Coombs JM; Matthews BW; Craig DB
    Biochemistry; 2003 Feb; 42(6):1707-10. PubMed ID: 12578385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. beta-galactosidase assay using capillary electrophoresis laser-induced fluorescence detection and resorufin-beta-D-galactopyranoside as substrate.
    Eggertson MJ; Craig DB
    Biomed Chromatogr; 1999 Dec; 13(8):516-9. PubMed ID: 10611604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the activity of individual subunits of single molecules of the tetrameric enzyme β-galactosidase.
    Craig DB; Morris TT; Ong-Justiniano CM
    Anal Chem; 2012 May; 84(10):4598-602. PubMed ID: 22503085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newly induced beta-galactosidase molecules have a higher activity than the basally expressed enzyme.
    Craig DB; Hall T
    J Clin Laser Med Surg; 2000 Aug; 18(4):209-13. PubMed ID: 11573513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrhenius plot for a reaction catalyzed by a single molecule of β-galactosidase.
    Craig DB; Chase LN
    Anal Chem; 2012 Feb; 84(4):2044-7. PubMed ID: 22263928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence-based enzymatic assay by capillary electrophoresis laser-induced fluorescence detection for the determination of a few beta-galactosidase molecules.
    Craig D; Arriaga EA; Banks P; Zhang Y; Renborg A; Palcic MM; Dovichi NJ
    Anal Biochem; 1995 Mar; 226(1):147-53. PubMed ID: 7785765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining capillary electrophoresis with laser-induced fluorescence detection for the analysis of Escherichia coli lysates.
    Wu SF; Chiu TC; Ho WL; Chang HT
    Electrophoresis; 2009 Jul; 30(13):2397-402. PubMed ID: 19621366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple sampling in single-cell enzyme assays using CE-laser-induced fluorescence to monitor reaction progress.
    Shoemaker GK; Lorieau J; Lau LH; Gillmor CS; Palcic MM
    Anal Chem; 2005 May; 77(10):3132-7. PubMed ID: 15889901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 12-Channel Peltier array temperature control unit for single molecule enzymology studies using capillary electrophoresis.
    Craig DB; Reinfelds G; Henderson A
    Electrophoresis; 2014 Aug; 35(16):2408-11. PubMed ID: 24616017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous properties of individual molecules of beta-galactosidase from the thermophilic bacteria Geobacillus stearothermophilus.
    Craig DB
    Protein J; 2010 Jan; 29(1):55-61. PubMed ID: 20049517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunoprecipitation combined with microchip capillary gel electrophoresis: Detection and quantification of β-galactosidase from crude E. coli cell lysate.
    Herwig E; Marchetti-Deschmann M; Wenz C; Rüfer A; Allmaier G
    Biotechnol J; 2011 Apr; 6(4):420-7. PubMed ID: 21416610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretically mediated microanalysis of beta-galactosidase on microchips.
    Burke BJ; Regnier FE
    Electrophoresis; 2001 Oct; 22(17):3744-51. PubMed ID: 11699913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoretic mobility, catalytic rate, and activation energy of catalysis of single molecules of the enzyme β-glucuronidase from Escherichia coli.
    Craig DB; King SD; Reinfelds G; Henderson ARP; Wood TEH
    Int J Biol Macromol; 2017 Mar; 96():669-674. PubMed ID: 27988292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free detection of single protein molecules using deep UV fluorescence lifetime microscopy.
    Li Q; Seeger S
    Anal Chem; 2006 Apr; 78(8):2732-7. PubMed ID: 16615786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual molecules of thermostable alkaline phosphatase support different catalytic rates at room temperature.
    Dyck AC; Craig DB
    Luminescence; 2002; 17(1):15-8. PubMed ID: 11816058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.