These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 19016566)
1. Explanation for the electrophoresis behaviour of DNA condensation induced by pseudopolyrotaxane of different lengths. Hou S; Yang K; Feng XZ Electrophoresis; 2008 Nov; 29(21):4391-8. PubMed ID: 19016566 [TBL] [Abstract][Full Text] [Related]
2. Scutellarin-graft cationic β-cyclodextrin-polyrotaxane: Synthesis, characterization and DNA condensation. Qin Q; Ma X; Liao X; Yang B Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1028-1036. PubMed ID: 27987656 [TBL] [Abstract][Full Text] [Related]
3. Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes. Ke CF; Hou S; Zhang HY; Liu Y; Yang K; Feng XZ Chem Commun (Camb); 2007 Aug; (32):3374-6. PubMed ID: 18019503 [TBL] [Abstract][Full Text] [Related]
4. Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril. Liu Y; Ke CF; Zhang HY; Wu WJ; Shi J J Org Chem; 2007 Jan; 72(1):280-3. PubMed ID: 17194112 [TBL] [Abstract][Full Text] [Related]
5. Construction and DNA condensation of cyclodextrin-based polypseudorotaxanes with anthryl grafts. Liu Y; Yu L; Chen Y; Zhao YL; Yang H J Am Chem Soc; 2007 Sep; 129(35):10656-7. PubMed ID: 17691791 [No Abstract] [Full Text] [Related]
6. One-pot synthesis of a polyrotaxane via selective threading of a PEI-b-PEG-b-PEI copolymer. Choi HS; Ooya T; Yui N Macromol Biosci; 2006 Jun; 6(6):420-4. PubMed ID: 16761273 [TBL] [Abstract][Full Text] [Related]
7. DNA condensation induced by a cationic polymer studied by atomic force microscopy and electrophoresis assay. Hou S; Yang K; Yao Y; Liu Z; Feng X; Wang R; Yang Y; Wang C Colloids Surf B Biointerfaces; 2008 Mar; 62(1):151-6. PubMed ID: 17988841 [TBL] [Abstract][Full Text] [Related]
8. DNA condensation induced by ruthenium(II) polypyridyl complexes [Ru(bpy)(2)(PIPSH)](2+) and [Ru(bpy)(2)(PIPNH)](2+). Sun B; Guan JX; Xu L; Yu BL; Jiang L; Kou JF; Wang L; Ding XD; Chao H; Ji LN Inorg Chem; 2009 Jun; 48(11):4637-9. PubMed ID: 19361162 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of pseudopolyrotaxanes-coated Superparamagnetic Iron Oxide Nanoparticles as new MRI contrast agent. Hosseini F; Panahifar A; Adeli M; Amiri H; Lascialfari A; Orsini F; Doschak MR; Mahmoudi M Colloids Surf B Biointerfaces; 2013 Mar; 103():652-7. PubMed ID: 23199519 [TBL] [Abstract][Full Text] [Related]
10. Influence of DNA condensation state on transfection efficiency in DNA/polymer complexes: an AFM and DLS comparative study. Volcke C; Pirotton S; Grandfils Ch; Humbert C; Thiry PA; Ydens I; Dubois P; Raes M J Biotechnol; 2006 Aug; 125(1):11-21. PubMed ID: 16860705 [TBL] [Abstract][Full Text] [Related]
11. Supramolecular and biomimetic polypseudorotaxane/glycopolymer biohybrids: synthesis, glucose-surfaced nanoparticles, and recognition with lectin. Dai XH; Dong CM; Yan D J Phys Chem B; 2008 Mar; 112(12):3644-52. PubMed ID: 18318528 [TBL] [Abstract][Full Text] [Related]
12. Supramolecular control of polyplex dissociation and cell transfection: efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes. Yamashita A; Kanda D; Katoono R; Yui N; Ooya T; Maruyama A; Akita H; Kogure K; Harashima H J Control Release; 2008 Oct; 131(2):137-44. PubMed ID: 18700157 [TBL] [Abstract][Full Text] [Related]
13. Physicochemical characterization of nanoparticles formed between DNA and phosphorylcholine substituted chitosans. Casé AH; Dalla Picola IP; Zaniquelli ME; Fernandes JC; Taboga SR; Winnik FM; Tiera MJ J Colloid Interface Sci; 2009 Aug; 336(1):125-33. PubMed ID: 19446829 [TBL] [Abstract][Full Text] [Related]
14. Per(6-guanidino-6-deoxy)cyclodextrins: synthesis, characterisation and binding behaviour toward selected small molecules and DNA. Mourtzis N; Eliadou K; Aggelidou C; Sophianopoulou V; Mavridis IM; Yannakopoulou K Org Biomol Chem; 2007 Jan; 5(1):125-31. PubMed ID: 17164916 [TBL] [Abstract][Full Text] [Related]
15. Cationic polyrotaxanes as gene carriers: physicochemical properties and real-time observation of DNA complexation, and gene transfection in cancer cells. Yang C; Wang X; Li H; Tan E; Lim CT; Li J J Phys Chem B; 2009 Jun; 113(22):7903-11. PubMed ID: 19422177 [TBL] [Abstract][Full Text] [Related]
16. Enhanced gene transfection performance and biocompatibility of polyethylenimine through pseudopolyrotaxane formation with α-cyclodextrin. Hu LZ; Wan N; Ma XX; Jing ZW; Zhang YX; Li C; Zhou SY; Zhang BL Nanotechnology; 2017 Mar; 28(12):125102. PubMed ID: 28163261 [TBL] [Abstract][Full Text] [Related]
17. Different mechanisms for nanoparticle formation between pDNA and siRNA using polyrotaxane as the polycation. Yamada Y; Hashida M; Nomura T; Harashima H; Yamasaki Y; Kataoka K; Yamashita A; Katoono R; Yui N Chemphyschem; 2012 Apr; 13(5):1161-5. PubMed ID: 22383277 [No Abstract] [Full Text] [Related]
18. Solvent-Free Formation of Cyclodextrin-Based Pseudopolyrotaxanes of Polyethylene Glycol: Kinetic and Structural Aspects. Guembe-Michel N; Durán A; Sirera R; González-Gaitano G Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054867 [TBL] [Abstract][Full Text] [Related]
19. DNA condensation by poly-L-lysine at the single molecule level: role of DNA concentration and polymer length. Mann A; Richa R; Ganguli M J Control Release; 2008 Feb; 125(3):252-62. PubMed ID: 18068848 [TBL] [Abstract][Full Text] [Related]
20. Pseudopolyrotaxane Formation in the Synthesis of Cyclodextrin Polymers: Effects on Drug Delivery, Mechanics, and Cell Compatibility. Thatiparti TR; Juric D; von Recum HA Bioconjug Chem; 2017 Apr; 28(4):1048-1058. PubMed ID: 28117991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]