BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 19016856)

  • 1. The sulfur atoms of the substrate CoA and the catalytic cysteine are required for a productive mode of substrate binding in bacterial biosynthetic thiolase, a thioester-dependent enzyme.
    Meriläinen G; Schmitz W; Wierenga RK; Kursula P
    FEBS J; 2008 Dec; 275(24):6136-48. PubMed ID: 19016856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase.
    Modis Y; Wierenga RK
    J Mol Biol; 2000 Apr; 297(5):1171-82. PubMed ID: 10764581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 1.8 A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism.
    Mathieu M; Modis Y; Zeelen JP; Engel CK; Abagyan RA; Ahlberg A; Rasmussen B; Lamzin VS; Kunau WH; Wierenga RK
    J Mol Biol; 1997 Oct; 273(3):714-28. PubMed ID: 9402066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I.
    Kursula P; Sikkilä H; Fukao T; Kondo N; Wierenga RK
    J Mol Biol; 2005 Mar; 347(1):189-201. PubMed ID: 15733928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalytic cycle of biosynthetic thiolase: a conformational journey of an acetyl group through four binding modes and two oxyanion holes.
    Kursula P; Ojala J; Lambeir AM; Wierenga RK
    Biochemistry; 2002 Dec; 41(52):15543-56. PubMed ID: 12501183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase (T1): insight into the reaction mechanism of its thiolase and thioesterase activities.
    Kiema TR; Harijan RK; Strozyk M; Fukao T; Alexson SE; Wierenga RK
    Acta Crystallogr D Biol Crystallogr; 2014 Dec; 70(Pt 12):3212-25. PubMed ID: 25478839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16.
    Kim EJ; Son HF; Kim S; Ahn JW; Kim KJ
    Biochem Biophys Res Commun; 2014 Feb; 444(3):365-9. PubMed ID: 24462871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of a mitochondrial 3-ketoacyl-CoA (T1)-like thiolase from Mycobacterium smegmatis.
    Janardan N; Harijan RK; Kiema TR; Wierenga RK; Murthy MR
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2479-93. PubMed ID: 26627655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiolase: A Versatile Biocatalyst Employing Coenzyme A-Thioester Chemistry for Making and Breaking C-C Bonds.
    Harijan RK; Dalwani S; Kiema TR; Venkatesan R; Wierenga RK
    Annu Rev Biochem; 2023 Jun; 92():351-384. PubMed ID: 37068769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the active site cysteine of DpgA, a bacterial type III polyketide synthase.
    Tseng CC; McLoughlin SM; Kelleher NL; Walsh CT
    Biochemistry; 2004 Feb; 43(4):970-80. PubMed ID: 14744141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis.
    Goblirsch BR; Jensen MR; Mohamed FA; Wackett LP; Wilmot CM
    J Biol Chem; 2016 Dec; 291(52):26698-26706. PubMed ID: 27815501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and purification of His-tagged rat mitochondrial 3-ketoacyl-CoA thiolase wild-type and His352 mutant proteins.
    Zeng J; Li D
    Protein Expr Purif; 2004 Jun; 35(2):320-6. PubMed ID: 15135409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism.
    Modis Y; Wierenga RK
    Structure; 1999 Oct; 7(10):1279-90. PubMed ID: 10545327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serine acetyltransferase of Escherichia coli: substrate specificity and feedback control by cysteine.
    Hindson VJ
    Biochem J; 2003 Nov; 375(Pt 3):745-52. PubMed ID: 12940772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of serine acetyltransferase in complexes with CoA and its cysteine feedback inhibitor.
    Olsen LR; Huang B; Vetting MW; Roderick SL
    Biochemistry; 2004 May; 43(20):6013-9. PubMed ID: 15147185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray crystal structures of HMG-CoA synthase from Enterococcus faecalis and a complex with its second substrate/inhibitor acetoacetyl-CoA.
    Steussy CN; Vartia AA; Burgner JW; Sutherlin A; Rodwell VW; Stauffacher CV
    Biochemistry; 2005 Nov; 44(43):14256-67. PubMed ID: 16245942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic studies on phosphopantothenoylcysteine decarboxylase: trapping of an enethiolate intermediate with a mechanism-based inactivating agent.
    Strauss E; Zhai H; Brand LA; McLafferty FW; Begley TP
    Biochemistry; 2004 Dec; 43(49):15520-33. PubMed ID: 15581364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure and biochemical properties of ReH16_A1887, the 3-ketoacyl-CoA thiolase from Ralstonia eutropha H16.
    Kim J; Kim KJ
    Biochem Biophys Res Commun; 2015 Apr; 459(3):547-52. PubMed ID: 25749345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thiolase superfamily: condensing enzymes with diverse reaction specificities.
    Haapalainen AM; Meriläinen G; Wierenga RK
    Trends Biochem Sci; 2006 Jan; 31(1):64-71. PubMed ID: 16356722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.