These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 19016973)
1. In situ detection of bacteria involved in cathodic depolarization and stainless steel surface corrosion using microautoradiography. Kjellerup BV; Olesen BH; Nielsen JL; Sowers KR; Nielsen PH J Appl Microbiol; 2008 Dec; 105(6):2231-8. PubMed ID: 19016973 [TBL] [Abstract][Full Text] [Related]
2. Biocidal effect of cathodic protection on bacterial viability in biofilm attached to carbon steel. Miyanaga K; Terashi R; Kawai H; Unno H; Tanji Y Biotechnol Bioeng; 2007 Jul; 97(4):850-7. PubMed ID: 17163515 [TBL] [Abstract][Full Text] [Related]
3. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. Lopes FA; Morin P; Oliveira R; Melo LF J Appl Microbiol; 2006 Nov; 101(5):1087-95. PubMed ID: 17040232 [TBL] [Abstract][Full Text] [Related]
4. Microbial corrosion of stainless steel. Ibars JR; Moreno DA; Ranninger C Microbiologia; 1992 Nov; 8(2):63-75. PubMed ID: 1492953 [TBL] [Abstract][Full Text] [Related]
5. Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography. Kjellerup BV; Olesen BH; Nielsen JL; Frølund B; Odum S; Nielsen PH Water Sci Technol; 2003; 47(5):117-22. PubMed ID: 12701915 [TBL] [Abstract][Full Text] [Related]
6. Phylogenetic and functional diversity of bacteria in biofilms from metal surfaces of an alkaline district heating system. Kjeldsen KU; Kjellerup BV; Egli K; Frølund B; Nielsen PH; Ingvorsen K FEMS Microbiol Ecol; 2007 Aug; 61(2):384-97. PubMed ID: 17651138 [TBL] [Abstract][Full Text] [Related]
8. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. Yuan SJ; Pehkonen SO Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747 [TBL] [Abstract][Full Text] [Related]
9. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. Bermont-Bouis D; Janvier M; Grimont PA; Dupont I; Vallaeys T J Appl Microbiol; 2007 Jan; 102(1):161-8. PubMed ID: 17184331 [TBL] [Abstract][Full Text] [Related]
10. Multiple imaging techniques demonstrate the manipulation of surfaces to reduce bacterial contamination and corrosion. Arnold JW; Boothe DH; Suzuki O; Bailey GW J Microsc; 2004 Dec; 216(Pt 3):215-21. PubMed ID: 15566492 [TBL] [Abstract][Full Text] [Related]
11. A dual-electrochemical cell to study the biocorrosion of stainless steel. Lopes FA; Perrin S; Féron D Water Sci Technol; 2007; 55(8-9):499-504. PubMed ID: 17547022 [TBL] [Abstract][Full Text] [Related]
12. Environmental scanning electron microscopy for dynamic corrosion studies of stainless steel piping used in UHP gas distribution systems. Gerristead WR; Link LF; Paciej RC; Damiani P; Li H Microsc Res Tech; 1993 Aug; 25(5-6):523-8. PubMed ID: 8400448 [TBL] [Abstract][Full Text] [Related]
13. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion. Mueller Y; Tognini R; Mayer J; Virtanen S J Biomed Mater Res A; 2007 Sep; 82(4):936-46. PubMed ID: 17335021 [TBL] [Abstract][Full Text] [Related]
14. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms. Eashwar M; Subramanian G; Palanichamy S; Rajagopal G; Madhu S; Kamaraj P Biofouling; 2009; 25(3):191-201. PubMed ID: 19169951 [TBL] [Abstract][Full Text] [Related]
15. [Effect of fibrinogen on corrosion behavior of stainless steel in artificial blood solution]. Guo L; Liang C; Guo H; Chen W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):565-7. PubMed ID: 11791309 [TBL] [Abstract][Full Text] [Related]
16. [Dynamics of successive changes in sulphidogenic microbial association under the conditions of formation of the biofilm on steel surface]. Purish LM; Asaulenko LH Mikrobiol Z; 2007; 69(6):19-25. PubMed ID: 18380176 [TBL] [Abstract][Full Text] [Related]
17. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid]. Liang C; Guo L; Chen W; Wang H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):730-3. PubMed ID: 16156260 [TBL] [Abstract][Full Text] [Related]
18. Control of metallic corrosion through microbiological route. Maruthamuthu S; Ponmariappan S; Mohanan S; Palaniswamy N; Palaniappan R; Rengaswamy NS Indian J Exp Biol; 2003 Sep; 41(9):1023-9. PubMed ID: 15242295 [TBL] [Abstract][Full Text] [Related]
19. Environmental Evidence for and Genomic Insight into the Preference of Iron-Oxidizing Bacteria for More-Corrosion-Resistant Stainless Steel at Higher Salinities. Garrison CE; Price KA; Field EK Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076431 [TBL] [Abstract][Full Text] [Related]
20. Review--Interactions between diatoms and stainless steel: focus on biofouling and biocorrosion. Landoulsi J; Cooksey KE; Dupres V Biofouling; 2011 Nov; 27(10):1109-24. PubMed ID: 22050233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]