BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 19016973)

  • 1. In situ detection of bacteria involved in cathodic depolarization and stainless steel surface corrosion using microautoradiography.
    Kjellerup BV; Olesen BH; Nielsen JL; Sowers KR; Nielsen PH
    J Appl Microbiol; 2008 Dec; 105(6):2231-8. PubMed ID: 19016973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocidal effect of cathodic protection on bacterial viability in biofilm attached to carbon steel.
    Miyanaga K; Terashi R; Kawai H; Unno H; Tanji Y
    Biotechnol Bioeng; 2007 Jul; 97(4):850-7. PubMed ID: 17163515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism.
    Lopes FA; Morin P; Oliveira R; Melo LF
    J Appl Microbiol; 2006 Nov; 101(5):1087-95. PubMed ID: 17040232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial corrosion of stainless steel.
    Ibars JR; Moreno DA; Ranninger C
    Microbiologia; 1992 Nov; 8(2):63-75. PubMed ID: 1492953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography.
    Kjellerup BV; Olesen BH; Nielsen JL; Frølund B; Odum S; Nielsen PH
    Water Sci Technol; 2003; 47(5):117-22. PubMed ID: 12701915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic and functional diversity of bacteria in biofilms from metal surfaces of an alkaline district heating system.
    Kjeldsen KU; Kjellerup BV; Egli K; Frølund B; Nielsen PH; Ingvorsen K
    FEMS Microbiol Ecol; 2007 Aug; 61(2):384-97. PubMed ID: 17651138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial diversity in biofilms from corroding heating systems.
    Kjellerup BV; Thomsen TR; Nielsen JL; Olesen BH; Frølund B; Nielsen PH
    Biofouling; 2005; 21(1):19-29. PubMed ID: 16019388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.
    Yuan SJ; Pehkonen SO
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel.
    Bermont-Bouis D; Janvier M; Grimont PA; Dupont I; Vallaeys T
    J Appl Microbiol; 2007 Jan; 102(1):161-8. PubMed ID: 17184331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple imaging techniques demonstrate the manipulation of surfaces to reduce bacterial contamination and corrosion.
    Arnold JW; Boothe DH; Suzuki O; Bailey GW
    J Microsc; 2004 Dec; 216(Pt 3):215-21. PubMed ID: 15566492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual-electrochemical cell to study the biocorrosion of stainless steel.
    Lopes FA; Perrin S; Féron D
    Water Sci Technol; 2007; 55(8-9):499-504. PubMed ID: 17547022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental scanning electron microscopy for dynamic corrosion studies of stainless steel piping used in UHP gas distribution systems.
    Gerristead WR; Link LF; Paciej RC; Damiani P; Li H
    Microsc Res Tech; 1993 Aug; 25(5-6):523-8. PubMed ID: 8400448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.
    Mueller Y; Tognini R; Mayer J; Virtanen S
    J Biomed Mater Res A; 2007 Sep; 82(4):936-46. PubMed ID: 17335021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.
    Eashwar M; Subramanian G; Palanichamy S; Rajagopal G; Madhu S; Kamaraj P
    Biofouling; 2009; 25(3):191-201. PubMed ID: 19169951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of fibrinogen on corrosion behavior of stainless steel in artificial blood solution].
    Guo L; Liang C; Guo H; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):565-7. PubMed ID: 11791309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Dynamics of successive changes in sulphidogenic microbial association under the conditions of formation of the biofilm on steel surface].
    Purish LM; Asaulenko LH
    Mikrobiol Z; 2007; 69(6):19-25. PubMed ID: 18380176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].
    Liang C; Guo L; Chen W; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):730-3. PubMed ID: 16156260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of metallic corrosion through microbiological route.
    Maruthamuthu S; Ponmariappan S; Mohanan S; Palaniswamy N; Palaniappan R; Rengaswamy NS
    Indian J Exp Biol; 2003 Sep; 41(9):1023-9. PubMed ID: 15242295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental Evidence for and Genomic Insight into the Preference of Iron-Oxidizing Bacteria for More-Corrosion-Resistant Stainless Steel at Higher Salinities.
    Garrison CE; Price KA; Field EK
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review--Interactions between diatoms and stainless steel: focus on biofouling and biocorrosion.
    Landoulsi J; Cooksey KE; Dupres V
    Biofouling; 2011 Nov; 27(10):1109-24. PubMed ID: 22050233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.