BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19017124)

  • 21. Effects of elevated CO2 concentration on seed production in C3 annual plants.
    Hikosaka K; Kinugasa T; Oikawa S; Onoda Y; Hirose T
    J Exp Bot; 2011 Feb; 62(4):1523-30. PubMed ID: 21177259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tropical spiderwort (Commelina benghalensis L.) increases growth under elevated atmospheric carbon dioxide.
    Price AJ; Runion GB; Prior SA; Rogers HH; Torbert HA
    J Environ Qual; 2009; 38(2):729-33. PubMed ID: 19244494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of current photosynthates to root respiration of non-nodulated Medicago sativa: effects of light and nitrogen supply.
    Lötscher M; Gayler S
    Plant Biol (Stuttg); 2005 Nov; 7(6):601-10. PubMed ID: 16388463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Root uptake regulation: a central process for NPS homeostasis in plants.
    Gojon A; Nacry P; Davidian JC
    Curr Opin Plant Biol; 2009 Jun; 12(3):328-38. PubMed ID: 19501015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of elevated atmospheric CO2 on invasive plants: comparison of purple and yellow nutsedge (Cyperus rotundus L. and C. esculentus L.).
    Rogers HH; Runion GB; Prior SA; Price AJ; Torbert HA; Gjerstad DH
    J Environ Qual; 2008; 37(2):395-400. PubMed ID: 18268302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth, photosynthesis, nitrogen partitioning and responses to CO2 enrichment in a barley mutant lacking NADH-dependent nitrate reductase activity.
    Sicher RC; Bunce JA
    Physiol Plant; 2008 Sep; 134(1):31-40. PubMed ID: 18485057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Availability of ferrocyanide and ferricyanide complexes as a nitrogen source to cyanogenic plants.
    Yu XZ; Gu JD; Li TP
    Arch Environ Contam Toxicol; 2008 Aug; 55(2):229-37. PubMed ID: 18180862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elevated CO2 decreases both transpiration flow and concentrations of Ca and Mg in the xylem sap of wheat.
    Houshmandfar A; Fitzgerald GJ; Tausz M
    J Plant Physiol; 2015 Feb; 174():157-60. PubMed ID: 25462978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active carbon-pools in rhizosphere of wheat (Triticum aestivum L.) grown under elevated atmospheric carbon dioxide concentration in a Typic Haplustept in sub-tropical India.
    Kant PC; Bhadraray S; Purakayastha TJ; Jain V; Pal M; Datta SC
    Environ Pollut; 2007 May; 147(1):273-81. PubMed ID: 17055632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. To what extent may changes in the root system architecture of Arabidopsis thaliana grown under contrasted homogenous nitrogen regimes be explained by changes in carbon supply? A modelling approach.
    Brun F; Richard-Molard C; Pagès L; Chelle M; Ney B
    J Exp Bot; 2010 May; 61(8):2157-69. PubMed ID: 20400530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO(2) concentrations.
    McGrath JM; Lobell DB
    Plant Cell Environ; 2013 Mar; 36(3):697-705. PubMed ID: 22943419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Senescence-related changes in nitrogen in fine roots: mass loss affects estimation.
    Kunkle JM; Walters MB; Kobe RK
    Tree Physiol; 2009 May; 29(5):715-23. PubMed ID: 19203982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE.
    Leakey AD; Ainsworth EA; Bernacchi CJ; Rogers A; Long SP; Ort DR
    J Exp Bot; 2009; 60(10):2859-76. PubMed ID: 19401412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of long-term exposure to elevated CO(2) conditions in slow-growing plants using a (12)C-enriched CO(2)-labelling technique.
    Pardo A; Aranjuelo I; Biel C; Savé R; Azcón-Bieto J; Nogués S
    Rapid Commun Mass Spectrom; 2009 Jan; 23(2):282-90. PubMed ID: 19072866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2.
    Deng Q; Hui D; Luo Y; Elser J; Wang YP; Loladze I; Zhang Q; Dennis S
    Ecology; 2015 Dec; 96(12):3354-62. PubMed ID: 26909440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO
    Houshmandfar A; Fitzgerald GJ; O'Leary G; Tausz-Posch S; Fletcher A; Tausz M
    Physiol Plant; 2018 Aug; 163(4):516-529. PubMed ID: 29205382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration.
    Shimono H; Bunce JA
    Ann Bot; 2009 Jan; 103(1):87-94. PubMed ID: 18952623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Root based approaches to improving nitrogen use efficiency in plants.
    Garnett T; Conn V; Kaiser BN
    Plant Cell Environ; 2009 Sep; 32(9):1272-83. PubMed ID: 19558408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ecosystem retrogression on stable nitrogen and carbon isotopes of plants, soils and consumer organisms in boreal forest islands.
    Hyodo F; Wardle DA
    Rapid Commun Mass Spectrom; 2009 Jul; 23(13):1892-8. PubMed ID: 19462406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global aspects of C/N interactions determining plant-environment interactions.
    Raven JA; Handley LL; Andrews M
    J Exp Bot; 2004 Jan; 55(394):11-25. PubMed ID: 14645388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.