These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19017473)

  • 1. Modeling and analysis of pH-electric-stimuli-responsive hydrogels.
    Luo R; Li H; Lam KY
    J Biomater Sci Polym Ed; 2008; 19(12):1597-610. PubMed ID: 19017473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modeling study of the effect of environmental ionic valence on the mechanical characteristics of pH-electrosensitive hydrogel.
    Luo R; Li H
    Acta Biomater; 2009 Oct; 5(8):2920-8. PubMed ID: 19427422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and simulation of chemo-electro-mechanical behavior of pH-electric-sensitive hydrogel.
    Luo R; Li H; Lam KY
    Anal Bioanal Chem; 2007 Oct; 389(3):863-73. PubMed ID: 17643229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and simulation of deformation of hydrogels responding to electric stimulus.
    Li H; Luo R; Lam KY
    J Biomech; 2007; 40(5):1091-8. PubMed ID: 16780849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of electric-stimulus-responsive hydrogels immersed in different bathing solutions.
    Luo R; Li H; Birgersson E; Lam KY
    J Biomed Mater Res A; 2008 Apr; 85(1):248-57. PubMed ID: 17688273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of initial-fixed charge density on pH-sensitive hydrogels subjected to coupled pH and electric field stimuli: a meshless analysis.
    Ng TY; Li H; Yew YK; Lam KY
    J Biomech Eng; 2007 Apr; 129(2):148-55. PubMed ID: 17408319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field.
    Li H; Yuan Z; Lam KY; Lee HP; Chen J; Hanes J; Fu J
    Biosens Bioelectron; 2004 Apr; 19(9):1097-107. PubMed ID: 15018965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the effect of environmental solution pH on the mechanical characteristics of glucose-sensitive hydrogels.
    Luo R; Li H; Lam KY
    Biomaterials; 2009 Feb; 30(4):690-700. PubMed ID: 18992938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphysics modeling of electrochemomechanically smart microgels responsive to coupled pH/electric stimuli.
    Li H; Luo R; Lam KY
    Macromol Biosci; 2009 Mar; 9(3):287-97. PubMed ID: 19009512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transient simulation to predict the kinetic behavior of hydrogels responsive to electric stimulus.
    Li H; Chen J; Lam KY
    Biomacromolecules; 2006 Jun; 7(6):1951-9. PubMed ID: 16768419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels.
    Li H; Ng TY; Yew YK; Lam KY
    Biomacromolecules; 2005; 6(1):109-20. PubMed ID: 15638511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient simulation of kinetics of electric-sensitive hydrogels.
    Li H; Chen J; Lam KY
    Biosens Bioelectron; 2007 Mar; 22(8):1633-41. PubMed ID: 16930980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and characterization of glucose-sensitive hydrogel: effect of Young's modulus.
    Li H; Luo R
    Biosens Bioelectron; 2009 Aug; 24(12):3630-6. PubMed ID: 19523807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiphysics modeling of responsive characteristics of ionic-strength-sensitive hydrogel.
    Li H; Lai F
    Biomed Microdevices; 2010 Jun; 12(3):419-34. PubMed ID: 20195766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model.
    Li H; Lai F; Luo R
    Langmuir; 2009 Nov; 25(22):13142-50. PubMed ID: 19678621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphysics modelling of volume phase transition of ionic hydrogels responsive to thermal stimulus.
    Li H; Wang X; Wang Z; Lam KY
    Macromol Biosci; 2005 Sep; 5(9):904-14. PubMed ID: 16136570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of pH and electrically controlled swelling of hydrogel-based micro-sensors/actuators.
    Yew YK; Ng TY; Li H; Lam KY
    Biomed Microdevices; 2007 Aug; 9(4):487-99. PubMed ID: 17520372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.
    Chan AW; Neufeld RJ
    Biomaterials; 2009 Oct; 30(30):6119-29. PubMed ID: 19660810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the multiphasic model and the transport model for the swelling and deformation of polyelectrolyte hydrogels.
    Feng L; Jia Y; Li X; An L
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1328-35. PubMed ID: 21783142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the influences of bathing solution and crosslink density on the swelling equilibrium of ionic thermo-sensitive hydrogels.
    Li H; Wang Z; Wang X; Lam KY
    Biophys Chem; 2005 Dec; 118(2-3):57-68. PubMed ID: 16055257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.