These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19018700)

  • 1. A computational model for rhythmic and discrete movements in uni- and bimanual coordination.
    Ronsse R; Sternad D; Lefèvre P
    Neural Comput; 2009 May; 21(5):1335-70. PubMed ID: 19018700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation during oscillatory movements.
    de Rugy A; Sternad D
    Brain Res; 2003 Dec; 994(2):160-74. PubMed ID: 14642641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling discrete and rhythmic movements through motor primitives: a review.
    Degallier S; Ijspeert A
    Biol Cybern; 2010 Oct; 103(4):319-38. PubMed ID: 20697734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermanual interactions during initiation and production of rhythmic and discrete movements in individuals lacking a corpus callosum.
    Sternad D; Wei K; Diedrichsen J; Ivry RB
    Exp Brain Res; 2007 Feb; 176(4):559-74. PubMed ID: 16917769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric transfer of visuomotor learning between discrete and rhythmic movements.
    Ikegami T; Hirashima M; Taga G; Nozaki D
    J Neurosci; 2010 Mar; 30(12):4515-21. PubMed ID: 20335489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between rhythmic and discrete components in a bimanual task.
    Wei K; Wertman G; Sternad D
    Motor Control; 2003 Apr; 7(2):134-54. PubMed ID: 13679627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separate representations of dynamics in rhythmic and discrete movements: evidence from motor learning.
    Howard IS; Ingram JN; Wolpert DM
    J Neurophysiol; 2011 Apr; 105(4):1722-31. PubMed ID: 21273324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancelling discrete and stopping ongoing rhythmic movements: Do they involve the same process of motor inhibition?
    Hervault M; Huys R; Farrer C; Buisson JC; Zanone PG
    Hum Mov Sci; 2019 Apr; 64():296-306. PubMed ID: 30825763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimanual adaptation: internal representations of bimanual rhythmic movements.
    Klaiman E; Karniel A
    Exp Brain Res; 2006 May; 171(2):204-14. PubMed ID: 16307246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of transcranial magnetic stimulation on bimanual movements.
    Chen JT; Lin YY; Shan DE; Wu ZA; Hallett M; Liao KK
    J Neurophysiol; 2005 Jan; 93(1):53-63. PubMed ID: 15331622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interference effects in bimanual coordination are independent of movement type.
    Calvin S; Huys R; Jirsa VK
    J Exp Psychol Hum Percept Perform; 2010 Dec; 36(6):1553-64. PubMed ID: 21038996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of discrete and rhythmic movements over a wide range of periods.
    Sternad D; de Rugy A; Pataky T; Dean WJ
    Exp Brain Res; 2002 Nov; 147(2):162-74. PubMed ID: 12410331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermanual interactions in discrete and periodic bimanual movements with same and different amplitudes.
    Heuer H; Klein W
    Exp Brain Res; 2005 Nov; 167(2):220-37. PubMed ID: 16175364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices.
    Biess A; Nagurka M; Flash T
    Biol Cybern; 2006 Jul; 95(1):31-53. PubMed ID: 16699783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asynchrony in discrete bimanual aiming: evidence for visual strategies of coordination.
    Miller KA; Smyth MM
    Q J Exp Psychol (Hove); 2012; 65(10):1911-26. PubMed ID: 22512469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilateral phase entrainment by movement-elicited afference contributes equally to the stability of in-phase and antiphase coordination.
    Ridderikhoff A; Peper CL; Beek PJ
    Neurosci Lett; 2006 May; 399(1-2):71-5. PubMed ID: 16472912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of bimanual rhythmic movements: trading efficiency for robustness depending on the context.
    Ronsse R; Thonnard JL; Lefèvre P; Sepulchre R
    Exp Brain Res; 2008 May; 187(2):193-205. PubMed ID: 18273610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The stability of rhythmic movement coordination depends on relative speed: the Bingham model supported.
    Snapp-Childs W; Wilson AD; Bingham GP
    Exp Brain Res; 2011 Nov; 215(2):89-100. PubMed ID: 21952789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The discontinuous nature of motor execution II. Merging discrete and rhythmic movements in a single-joint system -- the phase entrainment effect.
    Staude G; Dengler R; Wolf W
    Biol Cybern; 2002 Jun; 86(6):427-43. PubMed ID: 12111272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On rhythmic and discrete movements: reflections, definitions and implications for motor control.
    Hogan N; Sternad D
    Exp Brain Res; 2007 Jul; 181(1):13-30. PubMed ID: 17530234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.