BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 19019145)

  • 21. Real-time kinetic analyses of the interaction of ricin toxin A-chain with ribosomes prove a conformational change involved in complex formation.
    Honjo E; Watanabe K; Tsukamoto T
    J Biochem; 2002 Feb; 131(2):267-75. PubMed ID: 11820942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting ricin to the ribosome.
    May KL; Yan Q; Tumer NE
    Toxicon; 2013 Jul; 69():143-51. PubMed ID: 23454625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The C-terminus of pokeweed antiviral protein has distinct roles in transport to the cytosol, ribosome depurination and cytotoxicity.
    Baykal U; Tumer NE
    Plant J; 2007 Mar; 49(6):995-1007. PubMed ID: 17286798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Depurination of A4256 in 28 S rRNA by the ribosome-inactivating proteins from barley and ricin results in different ribosome conformations.
    Holmberg L; Nygård O
    J Mol Biol; 1996 May; 259(1):81-94. PubMed ID: 8648651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A non-toxic pokeweed antiviral protein mutant inhibits pathogen infection via a novel salicylic acid-independent pathway.
    Zoubenko O; Hudak K; Tumer NE
    Plant Mol Biol; 2000 Sep; 44(2):219-29. PubMed ID: 11117265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Depurination of plant ribosomes by pokeweed antiviral protein.
    Taylor BE; Irvin JD
    FEBS Lett; 1990 Oct; 273(1-2):144-6. PubMed ID: 2226845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Depurination of yeast 26S ribosomal RNA by recombinant ricin A chain.
    Bradley JL; Silva HM; McGuire PM
    Biochem Biophys Res Commun; 1987 Dec; 149(2):588-93. PubMed ID: 3322278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Charged and hydrophobic surfaces on the a chain of shiga-like toxin 1 recognize the C-terminal domain of ribosomal stalk proteins.
    McCluskey AJ; Bolewska-Pedyczak E; Jarvik N; Chen G; Sidhu SS; Gariépy J
    PLoS One; 2012; 7(2):e31191. PubMed ID: 22355345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for retro-translocation of pokeweed antiviral protein from endoplasmic reticulum into cytosol and separation of its activity on ribosomes from its activity on capped RNA.
    Parikh BA; Baykal U; Di R; Tumer NE
    Biochemistry; 2005 Feb; 44(7):2478-90. PubMed ID: 15709760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins.
    Endo Y; Mitsui K; Motizuki M; Tsurugi K
    J Biol Chem; 1987 Apr; 262(12):5908-12. PubMed ID: 3571242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pokeweed antiviral protein binds to the cap structure of eukaryotic mRNA and depurinates the mRNA downstream of the cap.
    Hudak KA; Bauman JD; Tumer NE
    RNA; 2002 Sep; 8(9):1148-59. PubMed ID: 12358434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel mechanism for inhibition of translation by pokeweed antiviral protein: depurination of the capped RNA template.
    Hudak KA; Wang P; Tumer NE
    RNA; 2000 Mar; 6(3):369-80. PubMed ID: 10744021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure-based design and optimization of a new class of small molecule inhibitors targeting the P-stalk binding pocket of ricin.
    Rudolph MJ; Dutta A; Tsymbal AM; McLaughlin JE; Chen Y; Davis SA; Theodorous SA; Pierce M; Algava B; Zhang X; Szekely Z; Roberge JY; Li XP; Tumer NE
    Bioorg Med Chem; 2024 Feb; 100():117614. PubMed ID: 38340640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting ricin: sensitive luminescent assay for ricin A-chain ribosome depurination kinetics.
    Sturm MB; Schramm VL
    Anal Chem; 2009 Apr; 81(8):2847-53. PubMed ID: 19364139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic specificity of three ribosome-inactivating proteins against fungal ribosomes, and correlation with antifungal activity.
    Park SW; Stevens NM; Vivanco JM
    Planta; 2002 Dec; 216(2):227-34. PubMed ID: 12447536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The catalytic subunit of shiga-like toxin 1 interacts with ribosomal stalk proteins and is inhibited by their conserved C-terminal domain.
    McCluskey AJ; Poon GM; Bolewska-Pedyczak E; Srikumar T; Jeram SM; Raught B; Gariépy J
    J Mol Biol; 2008 Apr; 378(2):375-86. PubMed ID: 18358491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adapting yeast as model to study ricin toxin a uptake and trafficking.
    Becker B; Schmitt MJ
    Toxins (Basel); 2011 Jul; 3(7):834-47. PubMed ID: 22069743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fluorescence anisotropy-based competition assay to identify inhibitors against ricin and Shiga toxin ribosome interactions.
    Dutta A; Szekely Z; Guven H; Li XP; McLaughlin JE; Tumer NE
    Anal Biochem; 2024 Sep; 692():115580. PubMed ID: 38825159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Convergent evolution led ribosome inactivating proteins to interact with ribosomal stalk.
    Lapadula WJ; Sanchez-Puerta MV; Ayub MJ
    Toxicon; 2012 Mar; 59(3):427-32. PubMed ID: 22245625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alteration of an amino acid residue outside the active site of the ricin A chain reduces its toxicity towards yeast ribosomes.
    Gould JH; Hartley MR; Welsh PC; Hoshizaki DK; Frankel A; Roberts LM; Lord JM
    Mol Gen Genet; 1991 Nov; 230(1-2):81-90. PubMed ID: 1745246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.