BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 1901916)

  • 21. Glycosylation requirements for intracellular transport and function of the hemagglutinin of influenza virus.
    Gallagher PJ; Henneberry JM; Sambrook JF; Gething MJ
    J Virol; 1992 Dec; 66(12):7136-45. PubMed ID: 1331514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influenza virus hemagglutinin (H3 subtype) requires palmitoylation of its cytoplasmic tail for assembly: M1 proteins of two subtypes differ in their ability to support assembly.
    Chen BJ; Takeda M; Lamb RA
    J Virol; 2005 Nov; 79(21):13673-84. PubMed ID: 16227287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the fusion peptide sequence in initial stages of influenza hemagglutinin-induced cell fusion.
    Schoch C; Blumenthal R
    J Biol Chem; 1993 May; 268(13):9267-74. PubMed ID: 8387488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemagglutinin of Influenza A, but not of Influenza B and C viruses is acylated by ZDHHC2, 8, 15 and 20.
    Gadalla MR; Abrami L; van der Goot FG; Veit M
    Biochem J; 2020 Jan; 477(1):285-303. PubMed ID: 31872235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of acylation of viral haemagglutinin during the influenza virus infectious cycle.
    Portincasa P; Conti G; Chezzi C
    Res Virol; 1992; 143(6):401-6. PubMed ID: 1297175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. S acylation of the hemagglutinin of influenza viruses: mass spectrometry reveals site-specific attachment of stearic acid to a transmembrane cysteine.
    Kordyukova LV; Serebryakova MV; Baratova LA; Veit M
    J Virol; 2008 Sep; 82(18):9288-92. PubMed ID: 18596092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endocytosis of chimeric influenza virus hemagglutinin proteins that lack a cytoplasmic recognition feature for coated pits.
    Lazarovits J; Naim HY; Rodriguez AC; Wang RH; Fire E; Bird C; Henis YI; Roth MG
    J Cell Biol; 1996 Jul; 134(2):339-48. PubMed ID: 8707820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The 5-hydroxytryptamine(1A) receptor is stably palmitoylated, and acylation is critical for communication of receptor with Gi protein.
    Papoucheva E; Dumuis A; Sebben M; Richter DW; Ponimaskin EG
    J Biol Chem; 2004 Jan; 279(5):3280-91. PubMed ID: 14604995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity.
    Wagner R; Herwig A; Azzouz N; Klenk HD
    J Virol; 2005 May; 79(10):6449-58. PubMed ID: 15858028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural features influencing hemagglutinin cleavability in a human influenza A virus.
    Kawaoka Y
    J Virol; 1991 Mar; 65(3):1195-201. PubMed ID: 1847449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disulfide bond formation during the folding of influenza virus hemagglutinin.
    Segal MS; Bye JM; Sambrook JF; Gething MJ
    J Cell Biol; 1992 Jul; 118(2):227-44. PubMed ID: 1321156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adenovirus death protein, a transmembrane protein encoded in the E3 region, is palmitoylated at the cytoplasmic tail.
    Hausmann J; Ortmann D; Witt E; Veit M; Seidel W
    Virology; 1998 May; 244(2):343-51. PubMed ID: 9601505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fatty acylation of the rat and human asialoglycoprotein receptors. A conserved cytoplasmic cysteine residue is acylated in all receptor subunits.
    Zeng FY; Weigel PH
    J Biol Chem; 1996 Dec; 271(50):32454-60. PubMed ID: 8943311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores.
    Melikyan GB; Jin H; Lamb RA; Cohen FS
    Virology; 1997 Aug; 235(1):118-28. PubMed ID: 9300043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytoplasmic domains of cellular and viral integral membrane proteins substitute for the cytoplasmic domain of the vesicular stomatitis virus glycoprotein in transport to the plasma membrane.
    Puddington L; Machamer CE; Rose JK
    J Cell Biol; 1986 Jun; 102(6):2147-57. PubMed ID: 3011809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elongation of the cytoplasmic tail interferes with the fusion activity of influenza virus hemagglutinin.
    Ohuchi M; Fischer C; Ohuchi R; Herwig A; Klenk HD
    J Virol; 1998 May; 72(5):3554-9. PubMed ID: 9557635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion.
    Takeda M; Leser GP; Russell CJ; Lamb RA
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14610-7. PubMed ID: 14561897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Basis for selective incorporation of glycoproteins into the influenza virus envelope.
    Naim HY; Roth MG
    J Virol; 1993 Aug; 67(8):4831-41. PubMed ID: 8392617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterologous transmembrane and cytoplasmic domains direct functional chimeric influenza virus hemagglutinins into the endocytic pathway.
    Roth MG; Doyle C; Sambrook J; Gething MJ
    J Cell Biol; 1986 Apr; 102(4):1271-83. PubMed ID: 3007532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen-Deuterium Exchange Supports Independent Membrane-Interfacial Fusion Peptide and Transmembrane Domains in Subunit 2 of Influenza Virus Hemagglutinin Protein, a Structured and Aqueous-Protected Connection between the Fusion Peptide and Soluble Ectodomain, and the Importance of Membrane Apposition by the Trimer-of-Hairpins Structure.
    Ranaweera A; Ratnayake PU; Ekanayaka EAP; Declercq R; Weliky DP
    Biochemistry; 2019 May; 58(19):2432-2446. PubMed ID: 31008587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.