These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19019160)

  • 1. Regulation of glutamate metabolism by protein kinases in mycobacteria.
    O'Hare HM; Durán R; Cerveñansky C; Bellinzoni M; Wehenkel AM; Pritsch O; Obal G; Baumgartner J; Vialaret J; Johnsson K; Alzari PM
    Mol Microbiol; 2008 Dec; 70(6):1408-23. PubMed ID: 19019160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of the GlnH and GlnX Signal Transduction Proteins Controlling PknG-Mediated Phosphorylation of OdhI and 2-Oxoglutarate Dehydrogenase Activity in Corynebacterium glutamicum.
    Sundermeyer L; Bosco G; Gujar S; Brocker M; Baumgart M; Willbold D; Weiergräber OH; Bellinzoni M; Bott M
    Microbiol Spectr; 2022 Dec; 10(6):e0267722. PubMed ID: 36445153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions.
    Villarino A; Duran R; Wehenkel A; Fernandez P; England P; Brodin P; Cole ST; Zimny-Arndt U; Jungblut PR; Cerveñansky C; Alzari PM
    J Mol Biol; 2005 Jul; 350(5):953-63. PubMed ID: 15978616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo.
    Cowley S; Ko M; Pick N; Chow R; Downing KJ; Gordhan BG; Betts JC; Mizrahi V; Smith DA; Stokes RW; Av-Gay Y
    Mol Microbiol; 2004 Jun; 52(6):1691-702. PubMed ID: 15186418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG.
    Schultz C; Niebisch A; Gebel L; Bott M
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):691-700. PubMed ID: 17437098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis.
    Rieck B; Degiacomi G; Zimmermann M; Cascioferro A; Boldrin F; Lazar-Adler NR; Bottrill AR; le Chevalier F; Frigui W; Bellinzoni M; Lisa MN; Alzari PM; Nguyen L; Brosch R; Sauer U; Manganelli R; O'Hare HM
    PLoS Pathog; 2017 May; 13(5):e1006399. PubMed ID: 28545104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein.
    Niebisch A; Kabus A; Schultz C; Weil B; Bott M
    J Biol Chem; 2006 May; 281(18):12300-7. PubMed ID: 16522631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Aspartate-Specific Solute-Binding Protein Regulates Protein Kinase G Activity To Control Glutamate Metabolism in Mycobacteria.
    Bhattacharyya N; Nkumama IN; Newland-Smith Z; Lin LY; Yin W; Cullen RE; Griffiths JS; Jarvis AR; Price MJ; Chong PY; Wallis R; O'Hare HM
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis.
    Scherr N; Honnappa S; Kunz G; Mueller P; Jayachandran R; Winkler F; Pieters J; Steinmetz MO
    Proc Natl Acad Sci U S A; 2007 Jul; 104(29):12151-6. PubMed ID: 17616581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism.
    Barthe P; Roumestand C; Canova MJ; Kremer L; Hurard C; Molle V; Cohen-Gonsaud M
    Structure; 2009 Apr; 17(4):568-78. PubMed ID: 19368890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases.
    Durán R; Villarino A; Bellinzoni M; Wehenkel A; Fernandez P; Boitel B; Cole ST; Alzari PM; Cerveñansky C
    Biochem Biophys Res Commun; 2005 Aug; 333(3):858-67. PubMed ID: 15967413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OdhI dephosphorylation kinetics during different glutamate production processes involving Corynebacterium glutamicum.
    Boulahya KA; Guedon E; Delaunay S; Schultz C; Boudrant J; Bott M; Goergen JL
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1867-74. PubMed ID: 20449744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mycobacterium tuberculosis serine/threonine kinase PknL phosphorylates Rv2175c: mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c.
    Canova MJ; Veyron-Churlet R; Zanella-Cleon I; Cohen-Gonsaud M; Cozzone AJ; Becchi M; Kremer L; Molle V
    Proteomics; 2008 Feb; 8(3):521-33. PubMed ID: 18175374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases.
    Schultz C; Niebisch A; Schwaiger A; Viets U; Metzger S; Bramkamp M; Bott M
    Mol Microbiol; 2009 Nov; 74(3):724-41. PubMed ID: 19788543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel drug discovery concept for tuberculosis: inhibition of bacterial and host cell signalling.
    Székely R; Wáczek F; Szabadkai I; Németh G; Hegymegi-Barakonyi B; Eros D; Szokol B; Pató J; Hafenbradl D; Satchell J; Saint-Joanis B; Cole ST; Orfi L; Klebl BM; Kéri G
    Immunol Lett; 2008 Mar; 116(2):225-31. PubMed ID: 18258308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and biochemical characterization of a serine threonine protein kinase, PknL, from Mycobacterium tuberculosis.
    Lakshminarayan H; Narayanan S; Bach H; Sundaram KG; Av-Gay Y
    Protein Expr Purif; 2008 Apr; 58(2):309-17. PubMed ID: 18276158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GarA is an essential regulator of metabolism in Mycobacterium tuberculosis.
    Ventura M; Rieck B; Boldrin F; Degiacomi G; Bellinzoni M; Barilone N; Alzaidi F; Alzari PM; Manganelli R; O'Hare HM
    Mol Microbiol; 2013 Oct; 90(2):356-66. PubMed ID: 23962235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity and Reactivity of
    Burastero O; Cabrera M; Lopez ED; Defelipe LA; Arcon JP; Durán R; Marti MA; Turjanski AG
    J Chem Inf Model; 2022 Apr; 62(7):1723-1733. PubMed ID: 35319884
    [No Abstract]   [Full Text] [Related]  

  • 19. Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host.
    Tiwari D; Singh RK; Goswami K; Verma SK; Prakash B; Nandicoori VK
    J Biol Chem; 2009 Oct; 284(40):27467-79. PubMed ID: 19638631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Tetratricopeptide Repeat Scaffold Couples Signal Detection to OdhI Phosphorylation in Metabolic Control by the Protein Kinase PknG.
    Lisa MN; Sogues A; Barilone N; Baumgart M; Gil M; Graña M; Durán R; Biondi RM; Bellinzoni M; Bott M; Alzari PM
    mBio; 2021 Oct; 12(5):e0171721. PubMed ID: 34607462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.