These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19019162)

  • 1. Novel Escherichia coli RF1 mutants with decreased translation termination activity and increased sensitivity to the cytotoxic effect of the bacterial toxins Kid and RelE.
    Diago-Navarro E; Mora L; Buckingham RH; Díaz-Orejas R; Lemonnier M
    Mol Microbiol; 2009 Jan; 71(1):66-78. PubMed ID: 19019162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome.
    Zhang S; Rydén-Aulin M; Isaksson LA
    J Mol Biol; 1996 Aug; 261(2):98-107. PubMed ID: 8757279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of premature translation termination on a sense codon.
    Svidritskiy E; Demo G; Korostelev AA
    J Biol Chem; 2018 Aug; 293(32):12472-12479. PubMed ID: 29941456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic and kinetic insights into stop codon recognition by release factor 1.
    Trappl K; Mathew MA; Joseph S
    PLoS One; 2014; 9(4):e94058. PubMed ID: 24699820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interaction between tRNA2Gly2 at the ribosomal P-site and RF1 during termination at UAG.
    Zhang S; Rydén-Aulin M; Isaksson LA
    J Mol Biol; 1998 Dec; 284(5):1243-6. PubMed ID: 9878344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular determinants of release factor 2 for ArfA-mediated ribosome rescue.
    Kurita D; Abo T; Himeno H
    J Biol Chem; 2020 Sep; 295(38):13326-13337. PubMed ID: 32727848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomal protein L11 mutations in two functional domains equally affect release factors 1 and 2 activity.
    Sato H; Ito K; Nakamura Y
    Mol Microbiol; 2006 Apr; 60(1):108-20. PubMed ID: 16556224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo.
    Mora L; Heurgué-Hamard V; de Zamaroczy M; Kervestin S; Buckingham RH
    J Biol Chem; 2007 Dec; 282(49):35638-45. PubMed ID: 17932046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global analysis of translation termination in E. coli.
    Baggett NE; Zhang Y; Gross CA
    PLoS Genet; 2017 Mar; 13(3):e1006676. PubMed ID: 28301469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Translation Termination: RF1 Dissociation Follows Dissociation of RF3 from the Ribosome.
    Shi X; Joseph S
    Biochemistry; 2016 Nov; 55(45):6344-6354. PubMed ID: 27779391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of ribosomes and release factors during translation termination in
    Adio S; Sharma H; Senyushkina T; Karki P; Maracci C; Wohlgemuth I; Holtkamp W; Peske F; Rodnina MV
    Elife; 2018 Jun; 7():. PubMed ID: 29889659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli.
    Mora L; Zavialov A; Ehrenberg M; Buckingham RH
    Mol Microbiol; 2003 Dec; 50(5):1467-76. PubMed ID: 14651631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. R213I mutation in release factor 2 (RF2) is one step forward for engineering an omnipotent release factor in bacteria
    Korkmaz G; Sanyal S
    J Biol Chem; 2017 Sep; 292(36):15134-15142. PubMed ID: 28743745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of two cis-acting mutations on the regulation and expression of release factor one in Escherichia coli.
    Dahlgren A; Rydén-Aulin M
    Biochimie; 2004 Jul; 86(7):431-8. PubMed ID: 15308332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1.
    Dahlgren A; Rydén-Aulin M
    Biochimie; 2000 Aug; 82(8):683-91. PubMed ID: 11018284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coevolution between Stop Codon Usage and Release Factors in Bacterial Species.
    Wei Y; Wang J; Xia X
    Mol Biol Evol; 2016 Sep; 33(9):2357-67. PubMed ID: 27297468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct roles for release factor 1 and release factor 2 in translational quality control.
    Petropoulos AD; McDonald ME; Green R; Zaher HS
    J Biol Chem; 2014 Jun; 289(25):17589-96. PubMed ID: 24798339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis for Translation Termination on a Pseudouridylated Stop Codon.
    Svidritskiy E; Madireddy R; Korostelev AA
    J Mol Biol; 2016 May; 428(10 Pt B):2228-36. PubMed ID: 27107638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites.
    Johnson DB; Xu J; Shen Z; Takimoto JK; Schultz MD; Schmitz RJ; Xiang Z; Ecker JR; Briggs SP; Wang L
    Nat Chem Biol; 2011 Sep; 7(11):779-86. PubMed ID: 21926996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release factor RF3 abolishes competition between release factor RF1 and ribosome recycling factor (RRF) for a ribosome binding site.
    Pavlov MY; Freistroffer DV; Heurgué-Hamard V; Buckingham RH; Ehrenberg M
    J Mol Biol; 1997 Oct; 273(2):389-401. PubMed ID: 9344747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.