These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 19019691)
1. Production of low-background CuSn6-bronze for the CRESST dark-matter-search experiment. Majorovits B; Kader H; Kraus H; Lossin A; Pantic E; Petricca F; Proebst F; Seidel W Appl Radiat Isot; 2009 Jan; 67(1):197-200. PubMed ID: 19019691 [TBL] [Abstract][Full Text] [Related]
2. Direct dark matter search using large-mass superheated droplet detectors in the PICASSO experiment. Azuelos G; Barnabé-Heider M; Behnke E; Clark K; Di Marco M; Doane P; Feighery W; Genest MH; Gornea R; Guenette R; Kanagalingam S; Krauss C; Leroy C; Lessard L; Levine I; Martin JP; Noble AJ; Noulty R; Shore SN; Wichoski U; Zacek V Radiat Prot Dosimetry; 2006; 120(1-4):495-8. PubMed ID: 16644961 [TBL] [Abstract][Full Text] [Related]
3. Development of superconducting contacts for the CRESST II 66-channel superconducting quantum interference device readout system. Majorovits B; Henry S; Kraus H Rev Sci Instrum; 2007 Jul; 78(7):073301. PubMed ID: 17672757 [TBL] [Abstract][Full Text] [Related]
4. Simulation of special bubble detectors for PICASSO. Azuelos G; Barnabé-Heider M; Behnke E; Clark K; Di Marco M; Doane P; Feighery W; Genest MH; Gornea R; Guénette R; Kanagalingam S; Krauss C; Leroy C; Lessard L; Levine I; Martin JP; Noble AJ; Noulty R; Shore SN; Wichoski U; Zacek V Radiat Prot Dosimetry; 2006; 120(1-4):499-502. PubMed ID: 16822778 [TBL] [Abstract][Full Text] [Related]
5. Dark matter search results from the CDMS II experiment. ; Ahmed Z; Akerib DS; Arrenberg S; Bailey CN; Balakishiyeva D; Baudis L; Bauer DA; Brink PL; Bruch T; Bunker R; Cabrera B; Caldwell DO; Cooley J; Cushman P; Daal M; DeJongh F; Dragowsky MR; Duong L; Fallows S; Figueroa-Feliciano E; Filippini J; Fritts M; Golwala SR; Grant DR; Hall J; Hennings-Yeomans R; Hertel SA; Holmgren D; Hsu L; Huber ME; Kamaev O; Kiveni M; Kos M; Leman SW; Mahapatra R; Mandic V; McCarthy KA; Mirabolfathi N; Moore D; Nelson H; Ogburn RW; Phipps A; Pyle M; Qiu X; Ramberg E; Rau W; Reisetter A; Saab T; Sadoulet B; Sander J; Schnee RW; Seitz DN; Serfass B; Sundqvist KM; Tarka M; Wikus P; Yellin S; Yoo J; Young BA; Zhang J Science; 2010 Mar; 327(5973):1619-21. PubMed ID: 20150446 [TBL] [Abstract][Full Text] [Related]
11. After the supernova, what? Wheeler JC Am Sci; 1973; 61(1):42-51. PubMed ID: 17712978 [No Abstract] [Full Text] [Related]
12. [Dark matter and dark energy of the universe]. Aguilar Peris J An R Acad Nac Med (Madr); 2005; 122(2):233-46; discussion 246-7. PubMed ID: 16463572 [TBL] [Abstract][Full Text] [Related]
13. Invited review article: IceCube: an instrument for neutrino astronomy. Halzen F; Klein SR Rev Sci Instrum; 2010 Aug; 81(8):081101. PubMed ID: 20815596 [TBL] [Abstract][Full Text] [Related]
14. Why is the temperature of the universe 2.726 Kelvin? Turner MS Science; 1993 Nov; 262(5135):861-7. PubMed ID: 17757353 [TBL] [Abstract][Full Text] [Related]
15. Dark energy and the cosmic microwave background radiation. Dodelson S; Knox L Phys Rev Lett; 2000 Apr; 84(16):3523-6. PubMed ID: 11019136 [TBL] [Abstract][Full Text] [Related]
16. New light on dark matter. Ostriker JP; Steinhardt P Science; 2003 Jun; 300(5627):1909-13. PubMed ID: 12817140 [TBL] [Abstract][Full Text] [Related]
17. Indirect detection of weakly interacting massive particles. Carr J Philos Trans A Math Phys Eng Sci; 2003 Nov; 361(1812):2569-79. PubMed ID: 14667318 [TBL] [Abstract][Full Text] [Related]