These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 190199)
21. The ultrastructure of the neonatal pig colon. Wooding FB; Smith MW; Craig H Am J Anat; 1978 Jul; 152(3):269-85. PubMed ID: 209685 [TBL] [Abstract][Full Text] [Related]
22. Light and electron microscopic observations of epithelial shedding in stored canine small intestine. Fujiwara H; Moore NA; Dzielak DJ; Grogan JB; Raju S Transplantation; 1995 Dec; 60(11):1322-6. PubMed ID: 8525528 [TBL] [Abstract][Full Text] [Related]
23. Scanning electron, light, and immunofluorescent microscopy of intestine of gnotobiotic calf infected with reovirus-like agent. Mebus CA; Newman LE Am J Vet Res; 1977 May; 38(5):553-8. PubMed ID: 195491 [TBL] [Abstract][Full Text] [Related]
24. NTP Toxicology and Carcinogenesis Studies of 1-Amino-2,4-Dibromoanthraquinone (CAS No. 81-49-2) in F344/N Rats and B6C3F1 Mice (Feed Studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 1996 Aug; 383():1-370. PubMed ID: 12692653 [TBL] [Abstract][Full Text] [Related]
25. Developmental expression of two antigens associated with mouse intestinal crypts. Beaulieu JF; Millane G; Calvert R Dev Dyn; 1992 Apr; 193(4):325-31. PubMed ID: 1511172 [TBL] [Abstract][Full Text] [Related]
26. Gradual disappearance of vacuolated enterocytes in the small intestine of neonatal piglets. Skrzypek T; Valverde Piedra JL; Skrzypek H; Kazimierczak W; Biernat M; Zabielski R J Physiol Pharmacol; 2007 Aug; 58 Suppl 3():87-95. PubMed ID: 17901585 [TBL] [Abstract][Full Text] [Related]
27. [The mucosa of the small intestine: development of the cellular lipid composition during enterocyte differentiation and postnatal maturation]. Alessandri JM; Arfi TS; Thieulin C Reprod Nutr Dev; 1990; 30(5):551-76. PubMed ID: 2291805 [TBL] [Abstract][Full Text] [Related]
28. Development of the external muscle coats in the digestive tract of the opossum, Didelphis virginiana. Cutts JH; Krause WJ; Leeson CR Acta Anat (Basel); 1978; 102(4):333-40. PubMed ID: 567924 [TBL] [Abstract][Full Text] [Related]
29. Scanning electron microscopic study of the small intestine of dogs from birth to 337 days of age. Hoskins JD; Henk WG; Abdelbaki YZ Am J Vet Res; 1982 Oct; 43(10):1715-20. PubMed ID: 7149372 [TBL] [Abstract][Full Text] [Related]
30. The equine colonic mucosal granular cell: identification and X-ray microanalysis of apical granules and nuclear bodies. Pfeiffer CJ; Murray MJ; Fainter L Anat Rec; 1987 Nov; 219(3):258-67. PubMed ID: 3425944 [TBL] [Abstract][Full Text] [Related]
31. The morphology of the intestine of the entomophagous longfingered bat, Miniopterus inflatus: mucosal topography and possible landmarks. Makanya AN Acta Biol Hung; 1997; 48(1):15-27. PubMed ID: 9199698 [TBL] [Abstract][Full Text] [Related]
32. Isolated crypts form spheres prior to full intestinal differentiation when grown as xenografts: an in vivo model for the study of intestinal differentiation and crypt neogenesis, and for the abnormal crypt architecture of juvenile polyposis coli. Del Buono R; Lee CY; Hawkey CJ; Wright NA J Pathol; 2005 Aug; 206(4):395-401. PubMed ID: 15965908 [TBL] [Abstract][Full Text] [Related]
33. Postnatal development and differentiation of the opossum submandibular gland. Leeson CR; Cutts JH; Krause WJ J Anat; 1978 Jun; 126(Pt 2):329-51. PubMed ID: 670067 [TBL] [Abstract][Full Text] [Related]
34. Lamina propria macrophages of intestine of the guinea pig. Possible role in phagocytosis of migrating cells. Sawicki W; Kucharczyk K; Szymanska K; Kujawa M Gastroenterology; 1977 Dec; 73(6):1340-4. PubMed ID: 562301 [TBL] [Abstract][Full Text] [Related]
35. The postnatal development of the liver in a marsupial, Didelphis virginiana. 2. Electron microscopy. Krause WJ; Cutts JH; Leeson CR J Anat; 1975 Sep; 120(Pt 1):191-205. PubMed ID: 1184456 [TBL] [Abstract][Full Text] [Related]
36. Milk lipid absorption and chylomicron production in the suckling rat. Berendsen PB; Blanchette-Mackie EJ Anat Rec; 1979 Nov; 195(3):397-414. PubMed ID: 228564 [TBL] [Abstract][Full Text] [Related]
37. Electron microscopic studies on the small intestine of rats after mechanical intestinal obstruction. Yamamoto M; Plessow B; Koch HK; Oehlert W Virchows Arch B Cell Pathol Incl Mol Pathol; 1979 Oct; 31(2):157-68. PubMed ID: 42212 [TBL] [Abstract][Full Text] [Related]
38. Gross, microscopic and ultrastructural study of the intestinal tube of Xenodon merremii Wagler, 1824 (Ophidia). Ferri S; Junqueira LC; Medeiros LF; Mederios LO J Anat; 1976 Apr; 121(Pt 2):291-301. PubMed ID: 58854 [TBL] [Abstract][Full Text] [Related]
39. Morphometric characteristics of the small and large intestines of Mus musculus during postnatal development. Wołczuk K; Wilczyńska B; Jaroszewska M; Kobak J Folia Morphol (Warsz); 2011 Nov; 70(4):252-9. PubMed ID: 22117242 [TBL] [Abstract][Full Text] [Related]
40. Goblet cells and intestinal Alkaline phosphatase expression (IAP) during the development of the rat small intestine. Gomes JR; Ayub LC; Dos Reis CA; Machado MJ; da Silva J; Omar NF; de Miranda Soares MA Acta Histochem; 2017 Jan; 119(1):71-77. PubMed ID: 27939968 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]