These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 19020075)
1. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters. Jordan IK; Kota KC; Cui G; Thompson CH; McCarty NA Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18865-70. PubMed ID: 19020075 [TBL] [Abstract][Full Text] [Related]
2. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related]
3. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396 [TBL] [Abstract][Full Text] [Related]
4. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Gadsby DC; Vergani P; Csanády L Nature; 2006 Mar; 440(7083):477-83. PubMed ID: 16554808 [TBL] [Abstract][Full Text] [Related]
5. Substitution of Yor1p NBD1 residues improves the thermal stability of Human Cystic Fibrosis Transmembrane Conductance Regulator. Xavier BM; Hildebrandt E; Jiang F; Ding H; Kappes JC; Urbatsch IL Protein Eng Des Sel; 2017 Oct; 30(10):729-741. PubMed ID: 29053845 [TBL] [Abstract][Full Text] [Related]
6. Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure. Linsdell P Channels (Austin); 2018; 12(1):284-290. PubMed ID: 30152709 [TBL] [Abstract][Full Text] [Related]
7. Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain. Sebastian A; Rishishwar L; Wang J; Bernard KF; Conley AB; McCarty NA; Jordan IK Gene; 2013 Jul; 523(2):137-46. PubMed ID: 23578801 [TBL] [Abstract][Full Text] [Related]
9. A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter. Kirk KL; Wang W J Biol Chem; 2011 Apr; 286(15):12813-9. PubMed ID: 21296873 [TBL] [Abstract][Full Text] [Related]
10. A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR. Shimizu H; Yu YC; Kono K; Kubota T; Yasui M; Li M; Hwang TC; Sohma Y J Physiol Sci; 2010 Sep; 60(5):353-62. PubMed ID: 20628841 [TBL] [Abstract][Full Text] [Related]
11. An Ancient CFTR Ortholog Informs Molecular Evolution in ABC Transporters. Cui G; Hong J; Chung-Davidson YW; Infield D; Xu X; Li J; Simhaev L; Khazanov N; Stauffer B; Imhoff B; Cottrill K; Blalock JE; Li W; Senderowitz H; Sorscher E; McCarty NA; Gaggar A Dev Cell; 2019 Nov; 51(4):421-430.e3. PubMed ID: 31679858 [TBL] [Abstract][Full Text] [Related]
12. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. Bai Y; Li M; Hwang TC J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575 [TBL] [Abstract][Full Text] [Related]
13. Structure and function of the CFTR chloride channel. Sheppard DN; Welsh MJ Physiol Rev; 1999 Jan; 79(1 Suppl):S23-45. PubMed ID: 9922375 [TBL] [Abstract][Full Text] [Related]
14. Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). Wang W; Linsdell P J Biol Chem; 2012 Mar; 287(13):10156-10165. PubMed ID: 22303012 [TBL] [Abstract][Full Text] [Related]
15. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. Tsai MF; Li M; Hwang TC J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370 [TBL] [Abstract][Full Text] [Related]
16. The glycine residues G551 and G1349 within the ATP-binding cassette signature motifs play critical roles in the activation and inhibition of cystic fibrosis transmembrane conductance regulator channels by phloxine B. Melin P; Norez C; Callebaut I; Becq F J Membr Biol; 2005 Dec; 208(3):203-12. PubMed ID: 16604470 [TBL] [Abstract][Full Text] [Related]
17. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475 [TBL] [Abstract][Full Text] [Related]
18. Mutations at arginine 352 alter the pore architecture of CFTR. Cui G; Zhang ZR; O'Brien AR; Song B; McCarty NA J Membr Biol; 2008 Mar; 222(2):91-106. PubMed ID: 18421494 [TBL] [Abstract][Full Text] [Related]
19. Building an understanding of cystic fibrosis on the foundation of ABC transporter structures. Mendoza JL; Thomas PJ J Bioenerg Biomembr; 2007 Dec; 39(5-6):499-505. PubMed ID: 18080175 [TBL] [Abstract][Full Text] [Related]
20. Electrodiffusional ATP movement through CFTR and other ABC transporters. Cantiello HF Pflugers Arch; 2001; 443 Suppl 1():S22-7. PubMed ID: 11845298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]