BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 19020085)

  • 1. Measuring internal friction of an ultrafast-folding protein.
    Cellmer T; Henry ER; Hofrichter J; Eaton WA
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18320-5. PubMed ID: 19020085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating free-energy barrier heights for an ultrafast folding protein from calorimetric and kinetic data.
    Godoy-Ruiz R; Henry ER; Kubelka J; Hofrichter J; Muñoz V; Sanchez-Ruiz JM; Eaton WA
    J Phys Chem B; 2008 May; 112(19):5938-49. PubMed ID: 18278894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Folding Internal Friction by Local and Global Barrier Heights.
    Zheng W; de Sancho D; Best RB
    J Phys Chem Lett; 2016 Mar; 7(6):1028-34. PubMed ID: 26947615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule fluorescence probes dynamics of barrier crossing.
    Chung HS; Eaton WA
    Nature; 2013 Oct; 502(7473):685-8. PubMed ID: 24153185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation rate for an ultrafast folding protein is independent of chemical denaturant concentration.
    Cellmer T; Henry ER; Kubelka J; Hofrichter J; Eaton WA
    J Am Chem Soc; 2007 Nov; 129(47):14564-5. PubMed ID: 17983235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent friction changes the folding pathway of the tryptophan zipper TZ2.
    Narayanan R; Pelakh L; Hagen SJ
    J Mol Biol; 2009 Jul; 390(3):538-46. PubMed ID: 19450609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy.
    Borgia A; Wensley BG; Soranno A; Nettels D; Borgia MB; Hoffmann A; Pfeil SH; Lipman EA; Clarke J; Schuler B
    Nat Commun; 2012; 3():1195. PubMed ID: 23149740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tests of Kramers' Theory at the Single-Molecule Level: Evidence for Folding of an Isolated RNA Tertiary Interaction at the Viscous Speed Limit.
    Dupuis NF; Holmstrom ED; Nesbitt DJ
    J Phys Chem B; 2018 Sep; 122(38):8796-8804. PubMed ID: 30078323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular origins of internal friction effects on protein-folding rates.
    de Sancho D; Sirur A; Best RB
    Nat Commun; 2014 Jul; 5():4307. PubMed ID: 24986114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusive model of protein folding dynamics with Kramers turnover in rate.
    Best RB; Hummer G
    Phys Rev Lett; 2006 Jun; 96(22):228104. PubMed ID: 16803349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evidence for a frustrated energy landscape in a three-helix-bundle protein family.
    Wensley BG; Batey S; Bone FA; Chan ZM; Tumelty NR; Steward A; Kwa LG; Borgia A; Clarke J
    Nature; 2010 Feb; 463(7281):685-8. PubMed ID: 20130652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscosity scaling for the glassy phase of protein folding.
    Kumar R; Bhuyan AK
    J Phys Chem B; 2008 Oct; 112(39):12549-54. PubMed ID: 18781712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy.
    Soranno A; Buchli B; Nettels D; Cheng RR; Müller-Späth S; Pfeil SH; Hoffmann A; Lipman EA; Makarov DE; Schuler B
    Proc Natl Acad Sci U S A; 2012 Oct; 109(44):17800-6. PubMed ID: 22492978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow Folding of a Helical Protein: Large Barriers, Strong Internal Friction, or a Shallow, Bumpy Landscape?
    Subramanian S; Golla H; Divakar K; Kannan A; de Sancho D; Naganathan AN
    J Phys Chem B; 2020 Oct; 124(41):8973-8983. PubMed ID: 32955882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties.
    Veitshans T; Klimov D; Thirumalai D
    Fold Des; 1997; 2(1):1-22. PubMed ID: 9080195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide chain dynamics in light and heavy water: zooming in on internal friction.
    Schulz JC; Schmidt L; Best RB; Dzubiella J; Netz RR
    J Am Chem Soc; 2012 Apr; 134(14):6273-9. PubMed ID: 22414068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding of the four-helix bundle FF domain from a compact on-pathway intermediate state is governed predominantly by water motion.
    Sekhar A; Vallurupalli P; Kay LE
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19268-73. PubMed ID: 23129654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent viscosity and friction in protein folding dynamics.
    Hagen SJ
    Curr Protein Pept Sci; 2010 Aug; 11(5):385-95. PubMed ID: 20426733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Configuration-dependent diffusion can shift the kinetic transition state and barrier height of protein folding.
    Chahine J; Oliveira RJ; Leite VB; Wang J
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14646-51. PubMed ID: 17804812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of internal friction on folding mechanism.
    Zheng W; De Sancho D; Hoppe T; Best RB
    J Am Chem Soc; 2015 Mar; 137(9):3283-90. PubMed ID: 25721133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.