BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19020100)

  • 1. NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide.
    Oberhauser V; Voolstra O; Bangert A; von Lintig J; Vogt K
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):19000-5. PubMed ID: 19020100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NinaB is essential for Drosophila vision but induces retinal degeneration in opsin-deficient photoreceptors.
    Voolstra O; Oberhauser V; Sumser E; Meyer NE; Maguire ME; Huber A; von Lintig J
    J Biol Chem; 2010 Jan; 285(3):2130-9. PubMed ID: 19889630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carotenoid cleavage enzymes evolved convergently to generate the visual chromophore.
    Solano YJ; Everett MP; Dang KS; Abueg J; Kiser PD
    Nat Chem Biol; 2024 Jun; 20(6):779-788. PubMed ID: 38355721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Gene Bombyx mori Carotenoid Oxygenases and Retinal Isomerase (BmCORI) Related to β-Carotene Depletion.
    Dong XL; Pan CX; Zhang MJ
    Biochem Genet; 2020 Aug; 58(4):509-517. PubMed ID: 29536214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular sites of Drosophila NinaB and NinaD activity in vitamin A metabolism.
    Yang J; O'Tousa JE
    Mol Cell Neurosci; 2007 May; 35(1):49-56. PubMed ID: 17344064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary aspects and enzymology of metazoan carotenoid cleavage oxygenases.
    Poliakov E; Uppal S; Rogozin IB; Gentleman S; Redmond TM
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Nov; 1865(11):158665. PubMed ID: 32061750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates.
    Poliakov E; Gubin AN; Stearn O; Li Y; Campos MM; Gentleman S; Rogozin IB; Redmond TM
    PLoS One; 2012; 7(11):e49975. PubMed ID: 23209628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila ninaB and ninaD act outside of retina to produce rhodopsin chromophore.
    Gu G; Yang J; Mitchell KA; O'Tousa JE
    J Biol Chem; 2004 Apr; 279(18):18608-13. PubMed ID: 14982930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NinaB and BCO Collaboratively Participate in the β-Carotene Catabolism in Crustaceans: A Case Study on Chinese Mitten Crab
    Zhang M; Xiong J; Yang Z; Zhu B; Wu Y; Chen X; Wu X
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the novel role of NinaB orthologs from Bombyx mori and Tribolium castaneum.
    Chai C; Xu X; Sun W; Zhang F; Ye C; Ding G; Li J; Zhong G; Xiao W; Liu B; von Lintig J; Lu C
    Insect Biochem Mol Biol; 2019 Jun; 109():106-115. PubMed ID: 30871993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of the vertebrate visual cycle: genes encoding retinal photoisomerase and two putative visual cycle proteins are expressed in whole brain of a primitive chordate.
    Nakashima Y; Kusakabe T; Kusakabe R; Terakita A; Shichida Y; Tsuda M
    J Comp Neurol; 2003 May; 460(2):180-90. PubMed ID: 12687683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two carotenoid oxygenases contribute to mammalian provitamin A metabolism.
    Amengual J; Widjaja-Adhi MAK; Rodriguez-Santiago S; Hessel S; Golczak M; Palczewski K; von Lintig J
    J Biol Chem; 2013 Nov; 288(47):34081-34096. PubMed ID: 24106281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The novel visual cycle inhibitor (±)-RPE65-61 protects retinal photoreceptors from light-induced degeneration.
    Wang Y; Ma X; Muthuraman P; Raja A; Jayaraman A; Petrukhin K; Cioffi CL; Ma JX; Moiseyev G
    PLoS One; 2022; 17(10):e0269437. PubMed ID: 36227868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of the pathway required for generation of vitamin A and for Drosophila phototransduction.
    Wang T; Jiao Y; Montell C
    J Cell Biol; 2007 Apr; 177(2):305-16. PubMed ID: 17452532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo and in vitro studies on the carotenoid cleavage oxygenases from Sphingopyxis alaskensis RB2256 and Plesiocystis pacifica SIR-1 revealed their substrate specificities and non-retinal-forming cleavage activities.
    Hoffmann J; Bóna-Lovász J; Beuttler H; Altenbuchner J
    FEBS J; 2012 Oct; 279(20):3911-24. PubMed ID: 22901074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized formation of detergent micelles of beta-carotene and retinal production using recombinant human beta,beta-carotene 15,15'-monooxygenase.
    Kim NH; Kim YS; Kim HJ; Oh DK
    Biotechnol Prog; 2008; 24(1):227-31. PubMed ID: 18154347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation invivo.
    von Lintig J; Dreher A; Kiefer C; Wernet MF; Vogt K
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1130-5. PubMed ID: 11158606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian carotenoid-oxygenases: key players for carotenoid function and homeostasis.
    Lobo GP; Amengual J; Palczewski G; Babino D; von Lintig J
    Biochim Biophys Acta; 2012 Jan; 1821(1):78-87. PubMed ID: 21569862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymology of vertebrate carotenoid oxygenases.
    Harrison EH; Kopec RE
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Nov; 1865(11):158653. PubMed ID: 32035229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin A aldehyde-taurine adduct and the visual cycle.
    Kim HJ; Zhao J; Sparrow JR
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):24867-24875. PubMed ID: 32958638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.