These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19020349)

  • 21. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets.
    Zheng B; Roach LS; Ismagilov RF
    J Am Chem Soc; 2003 Sep; 125(37):11170-1. PubMed ID: 16220918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallization of Proteins on Chip by Microdialysis for In Situ X-ray Diffraction Studies.
    Jaho S; Junius N; Borel F; Sallaz-Damaz Y; Salmon JB; Budayova-Spano M
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33900284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. REACH: Robotic Equipment for Automated Crystal Harvesting using a six-axis robot arm and a micro-gripper.
    Heidari Khajepour MY; Vernede X; Cobessi D; Lebrette H; Rogues P; Terrien M; Berzin C; Ferrer JL
    Acta Crystallogr D Biol Crystallogr; 2013 Mar; 69(Pt 3):381-7. PubMed ID: 23519413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. More rapid evaluation of biomacromolecular crystals for diffraction experiments.
    Arai S; Chatake T; Suzuki N; Mizuno H; Niimura N
    Acta Crystallogr D Biol Crystallogr; 2004 Jun; 60(Pt 6):1032-9. PubMed ID: 15159562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination.
    Hansen CL; Classen S; Berger JM; Quake SR
    J Am Chem Soc; 2006 Mar; 128(10):3142-3. PubMed ID: 16522084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions.
    Murray TD; Lyubimov AY; Ogata CM; Vo H; Uervirojnangkoorn M; Brunger AT; Berger JM
    Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):1987-97. PubMed ID: 26457423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis.
    Dhouib K; Khan Malek C; Pfleging W; Gauthier-Manuel B; Duffait R; Thuillier G; Ferrigno R; Jacquamet L; Ohana J; Ferrer JL; Théobald-Dietrich A; Giegé R; Lorber B; Sauter C
    Lab Chip; 2009 May; 9(10):1412-21. PubMed ID: 19417908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simple host-guest chemistry to modulate the process of concentration and crystallization of membrane proteins by detergent capture in a microfluidic device.
    Li L; Nachtergaele S; Seddon AM; Tereshko V; Ponomarenko N; Ismagilov RF
    J Am Chem Soc; 2008 Oct; 130(43):14324-8. PubMed ID: 18831551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic triple-gradient generator for efficient screening of chemical space.
    Li Y; Xuan J; Hu R; Zhang P; Lou X; Yang Y
    Talanta; 2019 Nov; 204():569-575. PubMed ID: 31357335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A standardized technique for high-pressure cooling of protein crystals.
    Quirnheim Pais D; Rathmann B; Koepke J; Tomova C; Wurzinger P; Thielmann Y
    Acta Crystallogr D Struct Biol; 2017 Dec; 73(Pt 12):997-1006. PubMed ID: 29199979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A power-free, parallel loading microfluidic reactor array for biochemical screening.
    Liu Y; Li G
    Sci Rep; 2018 Sep; 8(1):13664. PubMed ID: 30209328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystallization of the large membrane protein complex photosystem I in a microfluidic channel.
    Abdallah BG; Kupitz C; Fromme P; Ros A
    ACS Nano; 2013 Dec; 7(12):10534-43. PubMed ID: 24191698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in the Use of Microfluidics to Study Crystallization Fundamentals.
    Candoni N; Grossier R; Lagaize M; Veesler S
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():59-83. PubMed ID: 31018097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene-based microfluidics for serial crystallography.
    Sui S; Wang Y; Kolewe KW; Srajer V; Henning R; Schiffman JD; Dimitrakopoulos C; Perry SL
    Lab Chip; 2016 Aug; 16(16):3082-96. PubMed ID: 27241728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility of one-shot-per-crystal structure determination using Laue diffraction.
    Cornaby S; Szebenyi DM; Smilgies DM; Schuller DJ; Gillilan R; Hao Q; Bilderback DH
    Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):2-11. PubMed ID: 20057043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction.
    Perry SL; Guha S; Pawate AS; Bhaskarla A; Agarwal V; Nair SK; Kenis PJ
    Lab Chip; 2013 Aug; 13(16):3183-7. PubMed ID: 23828485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Throughput Protein Crystallization in an Integrated Droplet-Based Microfluidic Platform.
    Ferreira J; Castro F
    Methods Mol Biol; 2023; 2652():347-359. PubMed ID: 37093486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.
    Adamson DN; Mustafi D; Zhang JX; Zheng B; Ismagilov RF
    Lab Chip; 2006 Sep; 6(9):1178-86. PubMed ID: 16929397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins.
    Li L; Mustafi D; Fu Q; Tereshko V; Chen DL; Tice JD; Ismagilov RF
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19243-8. PubMed ID: 17159147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase knowledge enables rational screens for protein crystallization.
    Anderson MJ; Hansen CL; Quake SR
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16746-51. PubMed ID: 17075056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.