BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 19020502)

  • 1. The replisome uses mRNA as a primer after colliding with RNA polymerase.
    Pomerantz RT; O'Donnell M
    Nature; 2008 Dec; 456(7223):762-6. PubMed ID: 19020502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Escherichia coli replisome is inherently DNA damage tolerant.
    Yeeles JT; Marians KJ
    Science; 2011 Oct; 334(6053):235-8. PubMed ID: 21998391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct restart of a replication fork stalled by a head-on RNA polymerase.
    Pomerantz RT; O'Donnell M
    Science; 2010 Jan; 327(5965):590-2. PubMed ID: 20110508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bypass of complex co-directional replication-transcription collisions by replisome skipping.
    Brüning JG; Marians KJ
    Nucleic Acids Res; 2021 Sep; 49(17):9870-9885. PubMed ID: 34469567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct restart of a replication fork stalled by a head-on RNA polymerase.
    Pomerantz RT; O'Donnell M
    J Vis Exp; 2010 Apr; (38):. PubMed ID: 20436399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule analysis of the Escherichia coli replisome and use of clamps to bypass replication barriers.
    Georgescu RE; Yao NY; O'Donnell M
    FEBS Lett; 2010 Jun; 584(12):2596-605. PubMed ID: 20388515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replisome-mediated translesion synthesis by a cellular replicase.
    Nevin P; Gabbai CC; Marians KJ
    J Biol Chem; 2017 Aug; 292(33):13833-13842. PubMed ID: 28642369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of leading-strand lesion skipping by the replisome.
    Yeeles JT; Marians KJ
    Mol Cell; 2013 Dec; 52(6):855-65. PubMed ID: 24268579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helicase promotes replication re-initiation from an RNA transcript.
    Sun B; Singh A; Sultana S; Inman JT; Patel SS; Wang MD
    Nat Commun; 2018 Jun; 9(1):2306. PubMed ID: 29899338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two distinct triggers for cycling of the lagging strand polymerase at the replication fork.
    Li X; Marians KJ
    J Biol Chem; 2000 Nov; 275(44):34757-65. PubMed ID: 10948202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replisome structure and conformational dynamics underlie fork progression past obstacles.
    Yao NY; O'Donnell M
    Curr Opin Cell Biol; 2009 Jun; 21(3):336-43. PubMed ID: 19375905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What happens when replication and transcription complexes collide?
    Pomerantz RT; O'Donnell M
    Cell Cycle; 2010 Jul; 9(13):2537-43. PubMed ID: 20581460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The E. coli DNA Replication Fork.
    Lewis JS; Jergic S; Dixon NE
    Enzymes; 2016; 39():31-88. PubMed ID: 27241927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex.
    Liu B; Alberts BM
    Science; 1995 Feb; 267(5201):1131-7. PubMed ID: 7855590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork.
    Kim S; Dallmann HG; McHenry CS; Marians KJ
    J Biol Chem; 1996 Aug; 271(35):21406-12. PubMed ID: 8702922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli.
    Reyes-Lamothe R; Sherratt DJ; Leake MC
    Science; 2010 Apr; 328(5977):498-501. PubMed ID: 20413500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression.
    Yao NY; Georgescu RE; Finkelstein J; O'Donnell ME
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13236-41. PubMed ID: 19666586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single-molecule approach to DNA replication in Escherichia coli cells demonstrated that DNA polymerase III is a major determinant of fork speed.
    Pham TM; Tan KW; Sakumura Y; Okumura K; Maki H; Akiyama MT
    Mol Microbiol; 2013 Nov; 90(3):584-96. PubMed ID: 23998701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. III. A polymerase-primase interaction governs primer size.
    Zechner EL; Wu CA; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4054-63. PubMed ID: 1531480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA Polymerase III, but Not Polymerase IV, Must Be Bound to a τ-Containing DnaX Complex to Enable Exchange into Replication Forks.
    Yuan Q; Dohrmann PR; Sutton MD; McHenry CS
    J Biol Chem; 2016 May; 291(22):11727-35. PubMed ID: 27056333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.