These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19020675)

  • 21. The molybdenum and tungsten cofactors: a crystallographic view.
    Dobbek H; Huber R
    Met Ions Biol Syst; 2002; 39():227-63. PubMed ID: 11913127
    [No Abstract]   [Full Text] [Related]  

  • 22. Replacement of Molybdenum by Tungsten in a Biomimetic Complex Leads to an Increase in Oxygen Atom Transfer Catalytic Activity.
    Ćorović MZ; Wiedemaier F; Belaj F; Mösch-Zanetti NC
    Inorg Chem; 2022 Aug; 61(31):12415-12424. PubMed ID: 35894844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tungsten's redox potential is more temperature sensitive than that of molybdenum.
    Döring A; Schulzke C
    Dalton Trans; 2010 Jun; 39(24):5623-9. PubMed ID: 20495719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molybdenum-containing hydroxylases.
    Hille R
    Arch Biochem Biophys; 2005 Jan; 433(1):107-16. PubMed ID: 15581570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ansa-bridged eta5-cyclopentadienyl molybdenum and tungsten complexes: synthesis, structure and application in olefin epoxidation.
    Zhao J; Jain KR; Herdtweck E; Kühn FE
    Dalton Trans; 2007 Dec; (47):5567-71. PubMed ID: 18043819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic effects in oxo transfer reactions catalysed by salan molybdenum(VI) cis-dioxo complexes.
    Whiteoak CJ; Britovsek GJ; Gibson VC; White AJ
    Dalton Trans; 2009 Apr; (13):2337-44. PubMed ID: 19290366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calculation of photoelectron spectra of molybdenum and tungsten complexes using Green's functions methods.
    Bayse CA; Ortwine KN
    J Phys Chem A; 2007 Aug; 111(32):7841-7. PubMed ID: 17636964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of structural analogues of the oxidized sites in the xanthine oxidoreductase enzyme family.
    Wang JJ; Groysman S; Lee SC; Holm RH
    J Am Chem Soc; 2007 Jun; 129(24):7512-3. PubMed ID: 17530853
    [No Abstract]   [Full Text] [Related]  

  • 29. Carbamoylation of aryl halides by molybdenum or tungsten carbonyl amine complexes.
    Ren W; Yamane M
    J Org Chem; 2010 May; 75(9):3017-20. PubMed ID: 20349980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electroanalytical determination of tungsten and molybdenum in proteins.
    Hagedoorn PL; van't Slot P; van Leeuwen HP; Hagen WR
    Anal Biochem; 2001 Oct; 297(1):71-8. PubMed ID: 11567529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A chemical approach to systematically designate the pyranopterin centers of molybdenum and tungsten enzymes and synthetic models.
    Fischer B; Enemark JH; Basu P
    J Inorg Biochem; 1998 Oct; 72(1-2):13-21. PubMed ID: 9861725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in the metallotropic [1,3]-shift of alkynyl carbenoids.
    Lee D; Kim M
    Org Biomol Chem; 2007 Nov; 5(21):3418-27. PubMed ID: 17943198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria.
    Brondino CD; Rivas MG; Romão MJ; Moura JJ; Moura I
    Acc Chem Res; 2006 Oct; 39(10):788-96. PubMed ID: 17042479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molybdenum and tungsten enzymes: the xanthine oxidase family.
    Brondino CD; Romão MJ; Moura I; Moura JJ
    Curr Opin Chem Biol; 2006 Apr; 10(2):109-14. PubMed ID: 16480912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics and mechanism of oxygen-independent hydrocarbon hydroxylation by ethylbenzene dehydrogenase.
    Szaleniec M; Hagel C; Menke M; Nowak P; Witko M; Heider J
    Biochemistry; 2007 Jun; 46(25):7637-46. PubMed ID: 17542621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Models for the pyranopterin-containing molybdenum and tungsten cofactors.
    Fischer B; Burgmayer SJ
    Met Ions Biol Syst; 2002; 39():265-316. PubMed ID: 11913128
    [No Abstract]   [Full Text] [Related]  

  • 37. Structural link between giant molybdenum oxide based ions and derived Keggin structure: modular assemblies based on the [BW11O39]9- ion and pentagonal {M'M5} units (M' = W; M = Mo,W).
    Leclerc-Laronze N; Marrot J; Thouvenot R; Cadot E
    Angew Chem Int Ed Engl; 2009; 48(27):4986-9. PubMed ID: 19475597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interplay of crystallization kinetics and morphology in nanostructured W/Mo oxide formation: an in situ diffraction study.
    Zhou Y; Pienack N; Bensch W; Patzke GR
    Small; 2009 Sep; 5(17):1978-83. PubMed ID: 19548277
    [No Abstract]   [Full Text] [Related]  

  • 39. eta(1)-N-succinimidato complexes of iron, molybdenum and tungsten as reversible inhibitors of papain.
    Rudolf B; Salmain M; Martel A; Palusiak M; Zakrzewski J
    J Inorg Biochem; 2009 Aug; 103(8):1162-8. PubMed ID: 19616302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile syntheses and tunable non-linear optical properties of heterothiometallic clusters with [MS4Ag2] units (M=Mo, W).
    Zhang J; Meng S; Song Y; Zhao H; Li J; Qu G; Sun L; Humphrey MG; Zhang C
    Chemistry; 2010 Dec; 16(47):13946-50. PubMed ID: 21082620
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.