These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19020933)

  • 41. A simplified subtractive hybridization protocol used to isolate DNA sequences specific to Xylella fastidiosa.
    Ferreira H; Neto JR; Gonçalves ER; Rosato YB
    Microbiology (Reading); 1999 Aug; 145 ( Pt 8)():1967-1975. PubMed ID: 10463163
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phylogenetic Relationships of Xylella fastidiosa Strains Isolated from Landscape Ornamentals in Southern California.
    Hernandez-Martinez R; de la Cerda KA; Costa HS; Cooksey DA; Wong FP
    Phytopathology; 2007 Jul; 97(7):857-64. PubMed ID: 18943935
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A SYBR green-based real-time polymerase chain reaction protocol and novel DNA extraction technique to detect Xylella fastidiosa in Homalodisca coagulata.
    Bextine B; Blua M; Harshman D; Miller TA
    J Econ Entomol; 2005 Jun; 98(3):667-72. PubMed ID: 16022291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biological traits of Xylella fastidiosa strains from grapes and almonds.
    Almeida RP; Purcell AH
    Appl Environ Microbiol; 2003 Dec; 69(12):7447-52. PubMed ID: 14660397
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Population Structure of Xylella fastidiosa Associated with Almond Leaf Scorch Disease in the San Joaquin Valley of California.
    Lin H; Islam MS; Cabrera-La Rosa JC; Civerolo EL; Groves RL
    Phytopathology; 2015 Jun; 105(6):825-32. PubMed ID: 25807309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strains of Xylella fastidiosa rapidly distinguished by arbitrarily primed-PCR.
    da Costa PI; Franco CF; Miranda VS; Teixeira DC; Hartung JS
    Curr Microbiol; 2000 Apr; 40(4):279-82. PubMed ID: 10688699
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface motility of Xylella fastidiosa visualized by oblique illumination.
    Chen J; Groves R; Civerolo E; Livingston S
    Can J Microbiol; 2007 Mar; 53(3):435-9. PubMed ID: 17538654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of selected insecticides on Homalodisca coagulata (Homoptera: Cicadellidae) and transmission of oleander leaf scorch in a greenhouse study.
    Bethke JA; Blua MJ; Redak RA
    J Econ Entomol; 2001 Oct; 94(5):1031-6. PubMed ID: 11681662
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications.
    Harper SJ; Ward LI; Clover GR
    Phytopathology; 2010 Dec; 100(12):1282-8. PubMed ID: 20731533
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Whole Genome Sequence of Xylella fastidiosa ATCC 35879
    Chen J; O'Leary M; Burbank L; Zheng Z; Deng X
    Curr Microbiol; 2020 Aug; 77(8):1858-1863. PubMed ID: 32179972
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leaf Scorch of Purple-Leafed Plum and Sweetgum Dieback: Two New Diseases in Southern California Caused by Xylella fastidiosa Strains with Different Host Ranges.
    Hernandez-Martinez R; Cooksey DA; Wong FP
    Plant Dis; 2009 Nov; 93(11):1131-1138. PubMed ID: 30754576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two new superior primer pairs for universal detection of Xylella spp. in conventional PCR and TaqMan quantitative real-time PCR.
    Ito T; Chiaki Y
    J Microbiol Methods; 2021 Oct; 189():106321. PubMed ID: 34487776
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination.
    Jacques MA; Denancé N; Legendre B; Morel E; Briand M; Mississipi S; Durand K; Olivier V; Portier P; Poliakoff F; Crouzillat D
    Appl Environ Microbiol; 2015 Dec; 82(5):1556-68. PubMed ID: 26712553
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection and Characterization of
    Cieniewicz E; Schnabel E; Powell G; Snipes Z; Schnabel G
    Plant Dis; 2024 Jun; 108(6):1476-1480. PubMed ID: 38254326
    [No Abstract]   [Full Text] [Related]  

  • 55. Comparative genomic analysis of coffee-infecting Xylella fastidiosa strains isolated from Brazil.
    Barbosa D; Alencar VC; Santos DS; de Freitas Oliveira AC; de Souza AA; Coletta-Filho HD; Costa de Oliveira R; Nunes LR
    Microbiology (Reading); 2015 May; 161(Pt 5):1018-1033. PubMed ID: 25737482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Panel of Real-Time PCR Assays for the Direct Detection of All of the Xylella fastidiosa Subspecies.
    Hodgetts J
    Methods Mol Biol; 2022; 2536():201-230. PubMed ID: 35819607
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of Whole-Tissue and Xylem Fluid Collection Techniques to Detect Xylella fastidiosa in Grapevine and Oleander.
    Bextine BR; Miller TA
    Plant Dis; 2004 Jun; 88(6):600-604. PubMed ID: 30812578
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus.
    Lacava PT; Li W; Araújo WL; Azevedo JL; Hartung JS
    J Microbiol; 2007 Oct; 45(5):388-93. PubMed ID: 17978797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development and Evaluation of a Triplex TaqMan Assay and Next-Generation Sequence Analysis for Improved Detection of Xylella in Plant Material.
    Bonants P; Griekspoor Y; Houwers I; Krijger M; van der Zouwen P; van der Lee TAJ; van der Wolf J
    Plant Dis; 2019 Apr; 103(4):645-655. PubMed ID: 30777801
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil.
    Nunney L; Yuan X; Bromley RE; Stouthamer R
    Appl Environ Microbiol; 2012 Jul; 78(13):4702-14. PubMed ID: 22544234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.