These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19020952)

  • 1. Electrospun submicron bioactive glass fibers for bone tissue scaffold.
    Lu H; Zhang T; Wang XP; Fang QF
    J Mater Sci Mater Med; 2009 Mar; 20(3):793-8. PubMed ID: 19020952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering.
    Liu X; Huang W; Fu H; Yao A; Wang D; Pan H; Lu WW
    J Mater Sci Mater Med; 2009 Jan; 20(1):365-72. PubMed ID: 18807266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design.
    Shahbazi S; Zamanian A; Pazouki M; Jafari Y
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():109-120. PubMed ID: 29525086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.
    Shuai C; Huang W; Feng P; Gao C; Shuai X; Xiao T; Deng Y; Peng S; Wu P
    J Biomater Sci Polym Ed; 2016; 27(1):97-109. PubMed ID: 26592544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of porous 45S5 Bioglass-derived glass-ceramic scaffolds by using rice husk as a porogen additive.
    Wu SC; Hsu HC; Hsiao SH; Ho WF
    J Mater Sci Mater Med; 2009 Jun; 20(6):1229-36. PubMed ID: 19160020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Boron Oxide Concentration and Carbon Nanotubes Reinforcement on Bioactive Glass Scaffolds for Bone Tissue Engineering.
    Dixit K; Sinha N
    J Nanosci Nanotechnol; 2021 Oct; 21(10):5026-5035. PubMed ID: 33875087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration.
    Gao C; Gao Q; Li Y; Rahaman MN; Teramoto A; Abe K
    J Biomed Mater Res A; 2012 May; 100(5):1324-34. PubMed ID: 22374712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glass-ceramic scaffolds containing silica mesophases for bone grafting and drug delivery.
    Vitale-Brovarone C; Baino F; Miola M; Mortera R; Onida B; Verné E
    J Mater Sci Mater Med; 2009 Mar; 20(3):809-20. PubMed ID: 19020955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.
    Erol MM; Mouriňo V; Newby P; Chatzistavrou X; Roether JA; Hupa L; Boccaccini AR
    Acta Biomater; 2012 Feb; 8(2):792-801. PubMed ID: 22040685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Submicron bioactive glass tubes for bone tissue engineering.
    Xie J; Blough ER; Wang CH
    Acta Biomater; 2012 Feb; 8(2):811-9. PubMed ID: 21945829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering.
    Zhang X; Li XW; Li JG; Sun XD
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():362-7. PubMed ID: 25063129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.
    Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B
    J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering.
    Shaltooki M; Dini G; Mehdikhani M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110138. PubMed ID: 31546409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique.
    Wu ZY; Hill RG; Yue S; Nightingale D; Lee PD; Jones JR
    Acta Biomater; 2011 Apr; 7(4):1807-16. PubMed ID: 21130188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones.
    Liu WC; Robu IS; Patel R; Leu MC; Velez M; Chu TM
    Biomed Mater; 2014 Aug; 9(4):045013. PubMed ID: 25065552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.
    Lin D; Yang K; Tang W; Liu Y; Yuan Y; Liu C
    Colloids Surf B Biointerfaces; 2015 Jul; 131():1-11. PubMed ID: 25935647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of fibrous chitosan-glued phosphate glass fiber scaffolds for bone regeneration.
    Zheng K; Wu Z; Wei J; Rűssel C; Liang W; Boccaccini AR
    J Mater Sci Mater Med; 2015 Aug; 26(8):224. PubMed ID: 26271217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.