These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 19020952)
41. Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Liu X; Rahaman MN; Fu Q; Tomsia AP Acta Biomater; 2012 Jan; 8(1):415-23. PubMed ID: 21855661 [TBL] [Abstract][Full Text] [Related]
42. Fabrication, multi-scale characterization and in-vitro evaluation of porous hybrid bioactive glass polymer-coated scaffolds for bone tissue engineering. Chlanda A; Oberbek P; Heljak M; Kijeńska-Gawrońska E; Bolek T; Gloc M; John Ł; Janeta M; Woźniak MJ Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():516-523. PubMed ID: 30423736 [TBL] [Abstract][Full Text] [Related]
43. Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro. Midha S; van den Bergh W; Kim TB; Lee PD; Jones JR; Mitchell CA Adv Healthc Mater; 2013 Mar; 2(3):490-9. PubMed ID: 23184651 [TBL] [Abstract][Full Text] [Related]
44. Interaction of bioactive glass with clodronate. Rosenqvist K; Airaksinen S; Fraser SJ; Gordon KC; Juppo AM Int J Pharm; 2013 Aug; 452(1-2):102-7. PubMed ID: 23660371 [TBL] [Abstract][Full Text] [Related]
45. Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility. Zhijiang C; Qin Z; Xianyou S; Yuanpei L Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():797-806. PubMed ID: 27987775 [TBL] [Abstract][Full Text] [Related]
46. Fabrication of CaO-NaO-SiO(2)/TiO (2) scaffolds for surgical applications. Wren AW; Coughlan A; Smale KE; Misture ST; Mahon BP; Clarkin OM; Towler MR J Mater Sci Mater Med; 2012 Dec; 23(12):2881-91. PubMed ID: 22890520 [TBL] [Abstract][Full Text] [Related]
47. Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Singh BN; Pramanik K Biofabrication; 2017 Mar; 9(1):015028. PubMed ID: 28332482 [TBL] [Abstract][Full Text] [Related]
48. A 3D bioprinted in situ conjugated-co-fabricated scaffold for potential bone tissue engineering applications. Sithole MN; Kumar P; du Toit LC; Marimuthu T; Choonara YE; Pillay V J Biomed Mater Res A; 2018 May; 106(5):1311-1321. PubMed ID: 29316290 [TBL] [Abstract][Full Text] [Related]
49. Collagen/Beta-Tricalcium Phosphate Based Synthetic Bone Grafts via Dehydrothermal Processing. Sarikaya B; Aydin HM Biomed Res Int; 2015; 2015():576532. PubMed ID: 26504812 [TBL] [Abstract][Full Text] [Related]
50. Hierarchically biomimetic scaffold of a collagen-mesoporous bioactive glass nanofiber composite for bone tissue engineering. Hsu FY; Lu MR; Weng RC; Lin HM Biomed Mater; 2015 Mar; 10(2):025007. PubMed ID: 25805665 [TBL] [Abstract][Full Text] [Related]
51. Binary bioactive glass composite scaffolds for bone tissue engineering-Structure and mechanical properties in micro and nano scale. A preliminary study. Woźniak MJ; Chlanda A; Oberbek P; Heljak M; Czarnecka K; Janeta M; John Ł Micron; 2019 Apr; 119():64-71. PubMed ID: 30682529 [TBL] [Abstract][Full Text] [Related]
52. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226 [TBL] [Abstract][Full Text] [Related]
53. Bioactivity and mechanical properties of PDMS-modified CaO-SiO(2)-TiO(2) hybrids prepared by sol-gel process. Chen Q; Miyata N; Kokubo T; Nakamura T J Biomed Mater Res; 2000 Sep; 51(4):605-11. PubMed ID: 10880108 [TBL] [Abstract][Full Text] [Related]
54. In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na₂O-CaO-B₂O₃-P₂O₅ glasses. Abo-Naf SM; Khalil el-SM; El-Sayed el-SM; Zayed HA; Youness RA Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():88-98. PubMed ID: 25748986 [TBL] [Abstract][Full Text] [Related]
55. Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. Ren J; Blackwood KA; Doustgani A; Poh PP; Steck R; Stevens MM; Woodruff MA J Biomed Mater Res A; 2014 Sep; 102(9):3140-53. PubMed ID: 24133006 [TBL] [Abstract][Full Text] [Related]
56. Biocompatible glass-ceramic materials for bone substitution. Vitale-Brovarone C; Verné E; Robiglio L; Martinasso G; Canuto RA; Muzio G J Mater Sci Mater Med; 2008 Jan; 19(1):471-8. PubMed ID: 17607523 [TBL] [Abstract][Full Text] [Related]
57. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981 [TBL] [Abstract][Full Text] [Related]
58. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328 [TBL] [Abstract][Full Text] [Related]
59. Fabrication of fibrous poly(butylene succinate)/wollastonite/apatite composite scaffolds by electrospinning and biomimetic process. Zhang D; Chang J; Zeng Y J Mater Sci Mater Med; 2008 Jan; 19(1):443-9. PubMed ID: 17607518 [TBL] [Abstract][Full Text] [Related]
60. Studies on effect of CuO addition on mechanical properties and in vitro cytocompatibility in 1393 bioactive glass scaffold. Ali A; Ershad M; Vyas VK; Hira SK; Manna PP; Singh BN; Yadav S; Srivastava P; Singh SP; Pyare R Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():341-355. PubMed ID: 30274066 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]