These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Microstructure of a spatial map in the entorhinal cortex. Hafting T; Fyhn M; Molden S; Moser MB; Moser EI Nature; 2005 Aug; 436(7052):801-6. PubMed ID: 15965463 [TBL] [Abstract][Full Text] [Related]
4. Spatial representation in the entorhinal cortex. Fyhn M; Molden S; Witter MP; Moser EI; Moser MB Science; 2004 Aug; 305(5688):1258-64. PubMed ID: 15333832 [TBL] [Abstract][Full Text] [Related]
5. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Sargolini F; Fyhn M; Hafting T; McNaughton BL; Witter MP; Moser MB; Moser EI Science; 2006 May; 312(5774):758-62. PubMed ID: 16675704 [TBL] [Abstract][Full Text] [Related]
6. The emergence of grid cells: Intelligent design or just adaptation? Kropff E; Treves A Hippocampus; 2008; 18(12):1256-69. PubMed ID: 19021261 [TBL] [Abstract][Full Text] [Related]
8. Representation of geometric borders in the entorhinal cortex. Solstad T; Boccara CN; Kropff E; Moser MB; Moser EI Science; 2008 Dec; 322(5909):1865-8. PubMed ID: 19095945 [TBL] [Abstract][Full Text] [Related]
9. Topography of head direction cells in medial entorhinal cortex. Giocomo LM; Stensola T; Bonnevie T; Van Cauter T; Moser MB; Moser EI Curr Biol; 2014 Feb; 24(3):252-62. PubMed ID: 24440398 [TBL] [Abstract][Full Text] [Related]
10. A metric for space. Moser EI; Moser MB Hippocampus; 2008; 18(12):1142-56. PubMed ID: 19021254 [TBL] [Abstract][Full Text] [Related]
11. The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Koenig J; Linder AN; Leutgeb JK; Leutgeb S Science; 2011 Apr; 332(6029):592-5. PubMed ID: 21527713 [TBL] [Abstract][Full Text] [Related]
12. Hippocampus-independent phase precession in entorhinal grid cells. Hafting T; Fyhn M; Bonnevie T; Moser MB; Moser EI Nature; 2008 Jun; 453(7199):1248-52. PubMed ID: 18480753 [TBL] [Abstract][Full Text] [Related]
13. Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. Navratilova Z; Giocomo LM; Fellous JM; Hasselmo ME; McNaughton BL Hippocampus; 2012 Apr; 22(4):772-89. PubMed ID: 21484936 [TBL] [Abstract][Full Text] [Related]
14. Impact of temporal coding of presynaptic entorhinal cortex grid cells on the formation of hippocampal place fields. Molter C; Yamaguchi Y Neural Netw; 2008; 21(2-3):303-10. PubMed ID: 18242058 [TBL] [Abstract][Full Text] [Related]
17. Development of the spatial representation system in the rat. Langston RF; Ainge JA; Couey JJ; Canto CB; Bjerknes TL; Witter MP; Moser EI; Moser MB Science; 2010 Jun; 328(5985):1576-80. PubMed ID: 20558721 [TBL] [Abstract][Full Text] [Related]
18. Physiological Properties of Neurons in Bat Entorhinal Cortex Exhibit an Inverse Gradient along the Dorsal-Ventral Axis Compared to Entorhinal Neurons in Rat. Heys JG; Shay CF; MacLeod KM; Witter MP; Moss CF; Hasselmo ME J Neurosci; 2016 Apr; 36(16):4591-9. PubMed ID: 27098700 [TBL] [Abstract][Full Text] [Related]
19. Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus. Hargreaves EL; Yoganarasimha D; Knierim JJ Hippocampus; 2007; 17(9):826-41. PubMed ID: 17598156 [TBL] [Abstract][Full Text] [Related]
20. Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Rolls ET; Stringer SM; Elliot T Network; 2006 Dec; 17(4):447-65. PubMed ID: 17162463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]