These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19021324)

  • 1. Global analysis of microscopic fluorescence lifetime images using spectral segmentation and a digital micromirror spatial illuminator.
    Bednarkiewicz A; Whelan MP
    J Biomed Opt; 2008; 13(4):041316. PubMed ID: 19021324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging.
    Bednarkiewicz A; Bouhifd M; Whelan MP
    Appl Opt; 2008 Mar; 47(9):1193-9. PubMed ID: 18709064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovating lifetime microscopy: a compact and simple tool for life sciences, screening, and diagnostics.
    Esposito A; Gerritsen HC; Oggier T; Lustenberger F; Wouters FS
    J Biomed Opt; 2006; 11(3):34016. PubMed ID: 16822066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.
    Zhao Q; Schelen B; Schouten R; van den Oever R; Leenen R; van Kuijk H; Peters I; Polderdijk F; Bosiers J; Raspe M; Jalink K; Geert Sander de Jong J; van Geest B; Stoop K; Young IT
    J Biomed Opt; 2012 Dec; 17(12):126020. PubMed ID: 23323290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy.
    Kuang C; Ma Y; Zhou R; Lee J; Barbastathis G; Dasari RR; Yaqoob Z; So PT
    Opt Express; 2015 Oct; 23(21):26999-7010. PubMed ID: 26480361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Mobile Phone Performance for Near-Infrared Fluorescence Imaging.
    Ghassemi P; Wang B; Wang J; Wang Q; Chen Y; Joshua Pfefer T
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1650-1653. PubMed ID: 28113231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. flatFLIM: enhancing the dynamic range of frequency domain FLIM.
    Schuermann KC; Grecco HE
    Opt Express; 2012 Aug; 20(18):20730-41. PubMed ID: 23037122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Dual Image and Modeling Evaluation algorithm.
    Ehn A; Johansson O; Arvidsson A; Aldén M; Bood J
    Opt Express; 2012 Jan; 20(3):3043-56. PubMed ID: 22330541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital camera images obtained using a light-emitting diode illuminator and their dermatological applications.
    Ahn HH; Kim SN; Kye YC
    Skin Res Technol; 2006 Feb; 12(1):11-7. PubMed ID: 16420533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of facial sebum distribution using a digital fluorescent imaging system.
    Han B; Jung B; Nelson JS; Choi EH
    J Biomed Opt; 2007; 12(1):014006. PubMed ID: 17343481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High speed multispectral fluorescence lifetime imaging.
    Fereidouni F; Reitsma K; Gerritsen HC
    Opt Express; 2013 May; 21(10):11769-82. PubMed ID: 23736399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and simple spectral FLIM for biochemical and medical imaging.
    Popleteeva M; Haas KT; Stoppa D; Pancheri L; Gasparini L; Kaminski CF; Cassidy LD; Venkitaraman AR; Esposito A
    Opt Express; 2015 Sep; 23(18):23511-25. PubMed ID: 26368450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio.
    Connally R; Veal D; Piper J
    J Biomed Opt; 2004; 9(4):725-34. PubMed ID: 15250759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of subcellular texture by optical Gabor-like filtering with a digital micromirror device.
    Pasternack RM; Qian Z; Zheng JY; Metaxas DN; White E; Boustany NN
    Opt Lett; 2008 Oct; 33(19):2209-11. PubMed ID: 18830354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-crystal tunable filter spectral imaging for brain tumor demarcation.
    Gebhart SC; Thompson RC; Mahadevan-Jansen A
    Appl Opt; 2007 Apr; 46(10):1896-910. PubMed ID: 17356636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total light approach of time-domain fluorescence diffuse optical tomography.
    Marjono A; Yano A; Okawa S; Gao F; Yamada Y
    Opt Express; 2008 Sep; 16(19):15268-85. PubMed ID: 18795065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging.
    Requejo-Isidro J; McGinty J; Munro I; Elson DS; Galletly NP; Lever MJ; Neil MA; Stamp GW; French PM; Kellett PA; Hares JD; Dymoke-Bradshaw AK
    Opt Lett; 2004 Oct; 29(19):2249-51. PubMed ID: 15524370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time fluorescence lifetime imaging system with a 32 x 32 0.13microm CMOS low dark-count single-photon avalanche diode array.
    Li DU; Arlt J; Richardson J; Walker R; Buts A; Stoppa D; Charbon E; Henderson R
    Opt Express; 2010 May; 18(10):10257-69. PubMed ID: 20588879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple-plane particle image velocimetry using a light-field camera.
    Skupsch C; Brücker C
    Opt Express; 2013 Jan; 21(2):1726-40. PubMed ID: 23389157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.