These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19021372)

  • 1. Beyond the diffraction-limit biological imaging by saturated excitation microscopy.
    Yamanaka M; Kawano S; Fujita K; Smith NI; Kawata S
    J Biomed Opt; 2008; 13(5):050507. PubMed ID: 19021372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution confocal microscopy by saturated excitation of fluorescence.
    Fujita K; Kobayashi M; Kawano S; Yamanaka M; Kawata S
    Phys Rev Lett; 2007 Nov; 99(22):228105. PubMed ID: 18233334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saturated excitation microscopy for sub-diffraction-limited imaging of cell clusters.
    Yamanaka M; Yonemaru Y; Kawano S; Uegaki K; Smith NI; Kawata S; Fujita K
    J Biomed Opt; 2013 Dec; 18(12):126002. PubMed ID: 24296998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saturated-excitation image scanning microscopy.
    Temma K; Oketani R; Lachmann R; Kubo T; Smith NI; Heintzmann R; Fujita K
    Opt Express; 2022 Apr; 30(8):13825-13838. PubMed ID: 35472987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturated excitation microscopy with optimized excitation modulation.
    Yonemaru Y; Yamanaka M; Smith NI; Kawata S; Fujita K
    Chemphyschem; 2014 Mar; 15(4):743-9. PubMed ID: 24488765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturated two-photon excitation fluorescence microscopy with core-ring illumination.
    Oketani R; Doi A; Smith NI; Nawa Y; Kawata S; Fujita K
    Opt Lett; 2017 Feb; 42(3):571-574. PubMed ID: 28146530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination.
    Gustafsson MG; Shao L; Carlton PM; Wang CJ; Golubovskaya IN; Cande WZ; Agard DA; Sedat JW
    Biophys J; 2008 Jun; 94(12):4957-70. PubMed ID: 18326650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limits for reduction of effective focal volume in multiple-beam light microscopy.
    Arkhipov A; Schulten K
    Opt Express; 2009 Feb; 17(4):2861-70. PubMed ID: 19219190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saturated excitation of fluorescent proteins for subdiffraction-limited imaging of living cells in three dimensions.
    Yamanaka M; Saito K; Smith NI; Kawata S; Nagai T; Fujita K
    Interface Focus; 2013 Oct; 3(5):20130007. PubMed ID: 24511385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy.
    Chung E; Kim D; So PT
    Opt Lett; 2006 Apr; 31(7):945-7. PubMed ID: 16599220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of nanoparticle sizes by conventional optical microscopy with standing evanescent field illumination.
    Yu X; Araki Y; Iwami K; Umeda N
    Opt Lett; 2008 Dec; 33(23):2794-6. PubMed ID: 19037429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical structured illumination microscopy.
    Rego EH; Shao L
    Methods Mol Biol; 2015; 1251():175-92. PubMed ID: 25391800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging.
    Yamanaka M; Tzeng YK; Kawano S; Smith NI; Kawata S; Chang HC; Fujita K
    Biomed Opt Express; 2011 Jul; 2(7):1946-54. PubMed ID: 21750771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y2O3 nanophosphors.
    Furukawa T; Niioka H; Ichimiya M; Nagata T; Ashida M; Araki T; Hashimoto M
    Opt Express; 2013 Nov; 21(22):25655-63. PubMed ID: 24216790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realistic optical cell modeling and diffraction imaging simulation for study of optical and morphological parameters of nucleus.
    Zhang J; Feng Y; Jiang W; Lu JQ; Sa Y; Ding J; Hu XH
    Opt Express; 2016 Jan; 24(1):366-77. PubMed ID: 26832267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward fluorescence nanoscopy.
    Hell SW
    Nat Biotechnol; 2003 Nov; 21(11):1347-55. PubMed ID: 14595362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin.
    Bernas T; Robinson JP; Asem EK; Rajwa B
    J Biomed Opt; 2005; 10(6):064015. PubMed ID: 16409080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of index-mismatch-induced spherical aberration in pump--probe microscopic image formation.
    Fwu PT; Wang PH; Tung CK; Dong CY
    Appl Opt; 2005 Jul; 44(20):4220-7. PubMed ID: 16045208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New fluorescence imaging probe with high spatial resolution for in vivo applications.
    Bonnans V; Gharbi T; Pieralli C; Wacogne B; Humbert P
    J Biomed Opt; 2004; 9(5):928-33. PubMed ID: 15447013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of 3D geometry of microtubules using multi-angle total internal reflection fluorescence microscopy.
    Yang Q; Karpikov A; Toomre D; Duncan J
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):538-45. PubMed ID: 20879357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.