These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19021383)

  • 1. Fabrication strategies and potential applications of the "green" microstructured optical fibers.
    Dupuis A; Guo N; Gao Y; Skorobogata O; Gauvreau B; Dubois C; Skorobogatiy M
    J Biomed Opt; 2008; 13(5):054003. PubMed ID: 19021383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospective for biodegradable microstructured optical fibers.
    Dupuis A; Guo N; Gao Y; Godbout N; Lacroix S; Dubois C; Skorobogatiy M
    Opt Lett; 2007 Jan; 32(2):109-11. PubMed ID: 17186033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible biodegradable citrate-based polymeric step-index optical fiber.
    Shan D; Zhang C; Kalaba S; Mehta N; Kim GB; Liu Z; Yang J
    Biomaterials; 2017 Oct; 143():142-148. PubMed ID: 28802101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Handling characteristics of poly(L-lactide-co-epsilon-caprolactone) monofilament suture.
    Tomihata K; Suzuki M; Tomita N
    Biomed Mater Eng; 2005; 15(5):381-91. PubMed ID: 16179759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxymethyl Cellulose (CMC) Optical Fibers for Environment Sensing and Short-Range Optical Signal Transmission.
    Jaiswal AK; Hokkanen A; Kapulainen M; Khakalo A; Nonappa ; Ikkala O; Orelma H
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3315-3323. PubMed ID: 35000382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanofibrous scaffolds electrospun from elastomeric biodegradable poly(L-lactide-co-epsilon-caprolactone) copolymer.
    Chung S; Moghe AK; Montero GA; Kim SH; King MW
    Biomed Mater; 2009 Feb; 4(1):015019. PubMed ID: 19193973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the macromolecular architecture of biodegradable polyurethanes on the controlled delivery of ocular drugs.
    da Silva GR; da Silva Cunha A; Ayres E; Oréfice RL
    J Mater Sci Mater Med; 2009 Feb; 20(2):481-7. PubMed ID: 18853235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance.
    Grayson AC; Cima MJ; Langer R
    Biomaterials; 2005 May; 26(14):2137-45. PubMed ID: 15576189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyhydroxyalkanonate derivatives in current clinical applications and trials.
    Ueda H; Tabata Y
    Adv Drug Deliv Rev; 2003 Apr; 55(4):501-18. PubMed ID: 12706048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Futuristic medical implants using bioresorbable materials and devices.
    Chatterjee S; Saxena M; Padmanabhan D; Jayachandra M; Pandya HJ
    Biosens Bioelectron; 2019 Oct; 142():111489. PubMed ID: 31295710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications.
    Leclerc E; Furukawa KS; Miyata F; Sakai Y; Ushida T; Fujii T
    Biomaterials; 2004 Aug; 25(19):4683-90. PubMed ID: 15120514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy on biological evaluation for biodegradable/absorbable materials and medical devices.
    Liu C; Luo H; Wan M; Hou L; Wang X; Shi Y
    Biomed Mater Eng; 2018; 29(3):269-278. PubMed ID: 29578468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.
    Pal J; Kankariya N; Sanwaria S; Nandan B; Srivastava RK
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4213-20. PubMed ID: 23910335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation.
    Zhang X; Zhang C; Zhang W; Meng S; Liu D; Wang P; Guo J; Li J; Guan Y; Yang D
    Drug Dev Ind Pharm; 2015 Feb; 41(2):342-52. PubMed ID: 24320881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants.
    Lan SF; Kehinde T; Zhang X; Khajotia S; Schmidtke DW; Starly B
    Dent Mater; 2013 Jun; 29(6):656-65. PubMed ID: 23602170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multifunctional bilayered microstent as glaucoma drainage device.
    Wischke C; Neffe AT; Hanh BD; Kreiner CF; Sternberg K; Stachs O; Guthoff RF; Lendlein A
    J Control Release; 2013 Dec; 172(3):1002-10. PubMed ID: 24459692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ nanomechanical characterization of the early stages of swelling and degradation of a biodegradable polymer.
    Dumitru AC; Espinosa FM; Garcia R; Foschi G; Tortorella S; Valle F; Dallavalle M; Zerbetto F; Biscarini F
    Nanoscale; 2015 Mar; 7(12):5403-10. PubMed ID: 25727249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of in vitro drug release, pH change, and molecular weight degradation of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) fibers.
    Crow BB; Borneman AF; Hawkins DL; Smith GM; Nelson KD
    Tissue Eng; 2005; 11(7-8):1077-84. PubMed ID: 16144443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.