These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19021390)

  • 21. Fluorescence detection of protoporphyrin IX in living cells: a comparative study on single- and two-photon excitation.
    Lu S; Chen JY; Zhang Y; Ma J; Wang PN; Peng Q
    J Biomed Opt; 2008; 13(2):024014. PubMed ID: 18465977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-photon autofluorescence and second-harmonic imaging of adult stem cells.
    Uchugonova A; König K
    J Biomed Opt; 2008; 13(5):054068. PubMed ID: 19021446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements.
    Chang SK; Arifler D; Drezek R; Follen M; Richards-Kortum R
    J Biomed Opt; 2004; 9(3):511-22. PubMed ID: 15189089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pattern recognition of multiple excitation autofluorescence spectra for colon tissue classification.
    Liu L; Nie Y; Lin L; Li W; Huang Z; Xie S; Li B
    Photodiagnosis Photodyn Ther; 2013 May; 10(2):111-9. PubMed ID: 23769276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence.
    Yeh AT; Nassif N; Zoumi A; Tromberg BJ
    Opt Lett; 2002 Dec; 27(23):2082-4. PubMed ID: 18033448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy.
    Pavlova I; Sokolov K; Drezek R; Malpica A; Follen M; Richards-Kortum R
    Photochem Photobiol; 2003 May; 77(5):550-5. PubMed ID: 12812299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autofluorescence spectroscopy and imaging of Platymonas subcordiformis irradiated by diode laser based on LSCM.
    Huang Z; Chen R; Li Y; Zhuang H; Chen J; Wang L
    Scanning; 2008; 30(6):443-7. PubMed ID: 18752217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autofluorescence excitation-emission matrices for diagnosis of colonic cancer.
    Li BH; Xie SS
    World J Gastroenterol; 2005 Jul; 11(25):3931-4. PubMed ID: 15991296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-photon fluorescence microscopy of corneal riboflavin absorption.
    Gore DM; Margineanu A; French P; O'Brart D; Dunsby C; Allan BD
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2476-81. PubMed ID: 24644056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis.
    Dimitrow E; Riemann I; Ehlers A; Koehler MJ; Norgauer J; Elsner P; König K; Kaatz M
    Exp Dermatol; 2009 Jun; 18(6):509-15. PubMed ID: 19243426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Two-photon microscopy of the cornea using intrinsic contrast].
    Krüger A; Hovakimyan M; Ramírez DF; Stachs O; Lubatschowski H; Wree A; Guthoff R; Heisterkamp A
    Klin Monbl Augenheilkd; 2009 Dec; 226(12):970-9. PubMed ID: 20108191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polarization induced control of single and two-photon fluorescence.
    Nag A; Goswami D
    J Chem Phys; 2010 Apr; 132(15):154508. PubMed ID: 20423190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy.
    Grosberg LE; Radosevich AJ; Asfaha S; Wang TC; Hillman EM
    PLoS One; 2011; 6(5):e19925. PubMed ID: 21603623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extracting diagnostic stromal organization features based on intrinsic two-photon excited fluorescence and second-harmonic generation signals.
    Zhuo S; Chen J; Xie S; Hong Z; Jiang X
    J Biomed Opt; 2009; 14(2):020503. PubMed ID: 19405709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intravital autofluorescence 2-photon microscopy of murine intestinal mucosa with ultra-broadband femtosecond laser pulse excitation: image quality, photodamage, and inflammation.
    Klinger A; Krapf L; Orzekowsky-Schroeder R; Koop N; Vogel A; Hüttmann G
    J Biomed Opt; 2015 Nov; 20(11):116001. PubMed ID: 26524678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy.
    Salomonnson E; Mihalko LA; Verkhusha VV; Luker KE; Luker GD
    J Biomed Opt; 2012 Sep; 17(9):96001. PubMed ID: 22975677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensing cell metabolism by time-resolved autofluorescence.
    Wu Y; Zheng W; Qu JY
    Opt Lett; 2006 Nov; 31(21):3122-4. PubMed ID: 17041655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-photon autofluorescence microscopy of multicolor excitation.
    Li D; Zheng W; Qu JY
    Opt Lett; 2009 Jan; 34(2):202-4. PubMed ID: 19148255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous measurement of one- and two-photon excited fluorescence from a single sample: a detection method for oligonucleotides.
    Alexander T; Tran CD
    Appl Opt; 2002 Apr; 41(12):2285-91. PubMed ID: 12003221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emission spectra of colonic tissue and endogenous fluorophores.
    Banerjee B; Miedema B; Chandrasekhar HR
    Am J Med Sci; 1998 Sep; 316(3):220-6. PubMed ID: 9749567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.