These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 19021390)
61. High-speed two-photon excited autofluorescence imaging of ex vivo human retinal pigment epithelial cells toward age-related macular degeneration diagnostic. La Schiazza O; Bille JF J Biomed Opt; 2008; 13(6):064008. PubMed ID: 19123655 [TBL] [Abstract][Full Text] [Related]
62. Spectroscopic and microscopic characteristics of human skin autofluorescence emission. Zeng H; MacAulay C; McLean DI; Palcic B Photochem Photobiol; 1995 Jun; 61(6):639-45. PubMed ID: 7568410 [TBL] [Abstract][Full Text] [Related]
63. Enhanced two-channel nonlinear imaging by a highly polarized supercontinuum light source generated from a nonlinear photonic crystal fiber with two zero-dispersion wavelengths. Tao W; Bao H; Gu M J Biomed Opt; 2011 May; 16(5):056010. PubMed ID: 21639578 [TBL] [Abstract][Full Text] [Related]
64. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Chen Y; Periasamy A Microsc Res Tech; 2004 Jan; 63(1):72-80. PubMed ID: 14677136 [TBL] [Abstract][Full Text] [Related]
65. Classification of ultraviolet irradiated mouse skin histological stages by bimodal spectroscopy: multiple excitation autofluorescence and diffuse reflectance. Amouroux M; Díaz-Ayil G; Blondel WC; Bourg-Heckly G; Leroux A; Guillemin F J Biomed Opt; 2009; 14(1):014011. PubMed ID: 19256699 [TBL] [Abstract][Full Text] [Related]
66. Two photon spectroscopy and microscopy of the fluorescent flavoprotein, iLOV. Homans RJ; Khan RU; Andrews MB; Kjeldsen AE; Natrajan LS; Marsden S; McKenzie EA; Christie JM; Jones AR Phys Chem Chem Phys; 2018 Jun; 20(25):16949-16955. PubMed ID: 29873653 [TBL] [Abstract][Full Text] [Related]
67. A femtosecond time-resolved investigation of dual fluorescence from N6,N6-dimethyladenine. Schwalb NK; Temps F Phys Chem Chem Phys; 2006 Nov; 8(44):5229-35. PubMed ID: 17203147 [TBL] [Abstract][Full Text] [Related]
68. Precise analysis of the autofluorescence characteristics of rat colon under UVA and violet light excitation. Nakano K; Harada Y; Yamaoka Y; Miyawaki K; Imaizumi K; Takaoka H; Nakaoka M; Wakabayashi N; Yoshikawa T; Takamatsu T Curr Pharm Biotechnol; 2013; 14(2):172-9. PubMed ID: 22356112 [TBL] [Abstract][Full Text] [Related]
69. Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:Sapphire laser. Bindewald-Wittich A; Han M; Schmitz-Valckenberg S; Snyder SR; Giese G; Bille JF; Holz FG Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4553-7. PubMed ID: 17003452 [TBL] [Abstract][Full Text] [Related]
70. Sequential multitrack nonlinear ex vivo imaging of esophageal stroma based on backscattered second-harmonic generation and two-photon autofluorescence. Zhuo S; Chen J; Jiang X; Luo T; Chen R; Xie S; Zou Q Scanning; 2007; 29(5):219-24. PubMed ID: 17828710 [TBL] [Abstract][Full Text] [Related]
71. Perfectly registered multiphoton and reflectance confocal video rate imaging of in vivo human skin. Wang H; Lee AM; Frehlick Z; Lui H; McLean DI; Tang S; Zeng H J Biophotonics; 2013 Apr; 6(4):305-9. PubMed ID: 23418008 [TBL] [Abstract][Full Text] [Related]
72. Fluorene-based fluorescent probes with high two-photon action cross-sections for biological multiphoton imaging applications. Schafer-Hales KJ; Belfield KD; Yao S; Frederiksen PK; Hales JM; Kolattukudy PE J Biomed Opt; 2005; 10(5):051402. PubMed ID: 16292939 [TBL] [Abstract][Full Text] [Related]
73. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Schwille P; Haupts U; Maiti S; Webb WW Biophys J; 1999 Oct; 77(4):2251-65. PubMed ID: 10512844 [TBL] [Abstract][Full Text] [Related]
74. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion. Papayan G; Petrishchev N; Galagudza M Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770 [TBL] [Abstract][Full Text] [Related]
75. Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and exogenous fluorophores in breast cancer. Provenzano PP; Rueden CT; Trier SM; Yan L; Ponik SM; Inman DR; Keely PJ; Eliceiri KW J Biomed Opt; 2008; 13(3):031220. PubMed ID: 18601544 [TBL] [Abstract][Full Text] [Related]
76. Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Skala MC; Squirrell JM; Vrotsos KM; Eickhoff JC; Gendron-Fitzpatrick A; Eliceiri KW; Ramanujam N Cancer Res; 2005 Feb; 65(4):1180-6. PubMed ID: 15735001 [TBL] [Abstract][Full Text] [Related]
77. Imaging of epithelial tissue in vivo based on excitation of multiple endogenous nonlinear optical signals. Li D; Zheng W; Qu JY Opt Lett; 2009 Sep; 34(18):2853-5. PubMed ID: 19756127 [TBL] [Abstract][Full Text] [Related]
78. Multiphoton microscopy for tumor regression grading after neoadjuvant treatment for colorectal carcinoma. Li LH; Chen ZF; Wang XF; Zhuo SM; Li HS; Jiang WZ; Guan GX; Chen JX World J Gastroenterol; 2015 Apr; 21(14):4210-5. PubMed ID: 25892870 [TBL] [Abstract][Full Text] [Related]
79. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Raub CB; Suresh V; Krasieva T; Lyubovitsky J; Mih JD; Putnam AJ; Tromberg BJ; George SC Biophys J; 2007 Mar; 92(6):2212-22. PubMed ID: 17172303 [TBL] [Abstract][Full Text] [Related]
80. Cellular characterization of adenylate kinase and its isoform: two-photon excitation fluorescence imaging and fluorescence correlation spectroscopy. Ruan Q; Chen Y; Gratton E; Glaser M; Mantulin WW Biophys J; 2002 Dec; 83(6):3177-87. PubMed ID: 12496087 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]