BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 19021414)

  • 1. Topographical variations in the polarization sensitivity of articular cartilage as determined by polarization-sensitive optical coherence tomography and polarized light microscopy.
    Xie T; Xia Y; Guo S; Hoover P; Chen Z; Peavy GM
    J Biomed Opt; 2008; 13(5):054034. PubMed ID: 19021414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    J Biomed Opt; 2006; 11(6):064001. PubMed ID: 17212524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    Lasers Surg Med; 2006 Oct; 38(9):852-65. PubMed ID: 16998913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography.
    Liu B; Harman M; Giattina S; Stamper DL; Demakis C; Chilek M; Raby S; Brezinski ME
    Appl Opt; 2006 Jun; 45(18):4464-79. PubMed ID: 16778957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina.
    Pircher M; Götzinger E; Baumann B; Hitzenberger CK
    J Biomed Opt; 2007; 12(4):041210. PubMed ID: 17867799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography.
    Yang Y; Rupani A; Bagnaninchi P; Wimpenny I; Weightman A
    J Biomed Opt; 2012 Aug; 17(8):081417. PubMed ID: 23224178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transversal phase resolved polarization sensitive optical coherence tomography.
    Pircher M; Goetzinger E; Leitgeb R; Hitzenberger CK
    Phys Med Biol; 2004 Apr; 49(7):1257-63. PubMed ID: 15128203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Location-Specific Study of Young Rabbit Femoral Cartilage by Quantitative µMRI and Polarized Light Microscopy.
    Batool S; Hammami M; Mantebea H; Badar F; Xia Y
    Cartilage; 2022; 13(1):19476035221085143. PubMed ID: 35306861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slope-based segmentation of articular cartilage using polarization-sensitive optical coherence tomography phase retardation image.
    Zhou X; Ju MJ; Huang L; Tang S
    J Biomed Opt; 2019 Mar; 24(3):1-14. PubMed ID: 30873765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence tomography grading correlates with MRI T2 mapping and extracellular matrix content.
    Bear DM; Williams A; Chu CT; Coyle CH; Chu CR
    J Orthop Res; 2010 Apr; 28(4):546-52. PubMed ID: 19834953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maturation of collagen fibril network structure in tibial and femoral cartilage of rabbits.
    Julkunen P; Iivarinen J; Brama PA; Arokoski J; Jurvelin JS; Helminen HJ
    Osteoarthritis Cartilage; 2010 Mar; 18(3):406-15. PubMed ID: 19941998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-sensitive optical coherence tomography for imaging human atherosclerosis.
    Kuo WC; Chou NK; Chou C; Lai CM; Huang HJ; Wang SS; Shyu JJ
    Appl Opt; 2007 May; 46(13):2520-7. PubMed ID: 17429466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography.
    Götzinger E; Pircher M; Sticker M; Fercher AF; Hitzenberger CK
    J Biomed Opt; 2004; 9(1):94-102. PubMed ID: 14715060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usage of polarization-sensitive optical coherence tomography for investigation of collagen cross-linking.
    Ju MJ; Tang S
    J Biomed Opt; 2015 Apr; 20(4):046001. PubMed ID: 25837511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in submicroscopic structure of the extracellular matrix of canine femoral and tibial condylar articular cartilages as revealed by polarization microscopical analysis.
    Módis L; Botos A; Kiviranta I; Lukácskó L; Helminen HJ
    Acta Biol Hung; 1996; 47(1-4):341-53. PubMed ID: 9124004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of subtle cartilage and bone tissue degeneration in the equine joint using polarisation-sensitive optical coherence tomography.
    Goodwin M; Klufts M; Workman J; Thambyah A; Vanholsbeeck F
    Osteoarthritis Cartilage; 2022 Sep; 30(9):1234-1243. PubMed ID: 35714759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of topographical heterogeneity of articular cartilage over the joint surface of a humeral head.
    Xia Y; Moody JB; Alhadlaq H; Burton-Wurster N; Lust G
    Osteoarthritis Cartilage; 2002 May; 10(5):370-80. PubMed ID: 12027538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage.
    Xia Y; Moody JB; Burton-Wurster N; Lust G
    Osteoarthritis Cartilage; 2001 Jul; 9(5):393-406. PubMed ID: 11467887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic magnetic resonance imaging and polarised light microscopy.
    Alhadlaq HA; Xia Y; Moody JB; Matyas JR
    Ann Rheum Dis; 2004 Jun; 63(6):709-17. PubMed ID: 15140779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What can biophotonics tell us about the 3D microstructure of articular cartilage?
    Matcher SJ
    Quant Imaging Med Surg; 2015 Feb; 5(1):143-58. PubMed ID: 25694964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.