These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 19021431)
21. A method for determination of the absorption and scattering properties interstitially in turbid media. Dimofte A; Finlay JC; Zhu TC Phys Med Biol; 2005 May; 50(10):2291-311. PubMed ID: 15876668 [TBL] [Abstract][Full Text] [Related]
22. Experimental and simulated angular profiles of fluorescence and diffuse reflectance emission from turbid media. Gebhart SC; Mahadevan-Jansen A; Lin WC Appl Opt; 2005 Aug; 44(23):4884-901. PubMed ID: 16114526 [TBL] [Abstract][Full Text] [Related]
23. Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system. Pilz M; Honold S; Kienle A J Biomed Opt; 2008; 13(5):054047. PubMed ID: 19021427 [TBL] [Abstract][Full Text] [Related]
24. Temporal propagation of spatial information in turbid media. Bassi A; D'Andrea C; Valentini G; Cubeddu R; Arridge S Opt Lett; 2008 Dec; 33(23):2836-8. PubMed ID: 19037443 [TBL] [Abstract][Full Text] [Related]
25. 250 years Lambert surface: does it really exist? Kienle A; Foschum F Opt Express; 2011 Feb; 19(5):3881-9. PubMed ID: 21369213 [TBL] [Abstract][Full Text] [Related]
26. Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media. Liu Q; Ramanujam N Opt Lett; 2004 Sep; 29(17):2034-6. PubMed ID: 15455771 [TBL] [Abstract][Full Text] [Related]
27. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties. Ma G; Delorme JF; Gallant P; Boas DA Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611 [TBL] [Abstract][Full Text] [Related]
28. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. Liu Q; Zhu C; Ramanujam N J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848 [TBL] [Abstract][Full Text] [Related]
29. Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media. Amelink A; Bard MP; Burgers SA; Sterenborg HJ Appl Opt; 2003 Jul; 42(19):4095-101. PubMed ID: 12868852 [TBL] [Abstract][Full Text] [Related]
30. Extraction of depth-dependent signals from time-resolved reflectance in layered turbid media. Sato C; Shimada M; Yamada Y; Hoshi Y J Biomed Opt; 2005; 10(6):064008. PubMed ID: 16409073 [TBL] [Abstract][Full Text] [Related]
31. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence. Diamond KR; Farrell TJ; Patterson MS Phys Med Biol; 2003 Dec; 48(24):4135-49. PubMed ID: 14727757 [TBL] [Abstract][Full Text] [Related]
32. Differential optical spectroscopy for absorption characterization of scattering media. Billet C; Sablong R Opt Lett; 2007 Nov; 32(22):3251-3. PubMed ID: 18026270 [TBL] [Abstract][Full Text] [Related]
33. Direct measurement of relative and collective diffusion in a dilute binary colloidal suspension. Knowles MK; Honerkamp-Smith AR; Marcus AH J Chem Phys; 2005 Jun; 122(23):234909. PubMed ID: 16008489 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media. Sharma D; Agrawal A; Matchette LS; Pfefer TJ Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274 [TBL] [Abstract][Full Text] [Related]
35. Application of multiple artificial neural networks for the determination of the optical properties of turbid media. Jäger M; Foschum F; Kienle A J Biomed Opt; 2013 May; 18(5):57005. PubMed ID: 23680997 [TBL] [Abstract][Full Text] [Related]
36. Measuring the scattering coefficient of turbid media from two-photon microscopy. Sevrain D; Dubreuil M; Leray A; Odin C; Le Grand Y Opt Express; 2013 Oct; 21(21):25221-35. PubMed ID: 24150363 [TBL] [Abstract][Full Text] [Related]
37. Theory of light propagation incorporating scattering and absorption in turbid media. Yang L; Miklavcic SJ Opt Lett; 2005 Apr; 30(7):792-4. PubMed ID: 15832940 [TBL] [Abstract][Full Text] [Related]
38. Optical imaging of turbid media using independent component analysis: theory and simulation. Xu M; Alrubaiee M; Gayen SK; Alfano RR J Biomed Opt; 2005; 10(5):051705. PubMed ID: 16292957 [TBL] [Abstract][Full Text] [Related]
39. Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium. Hall D; Ma G; Lesage F; Wang Y Opt Lett; 2004 Oct; 29(19):2258-60. PubMed ID: 15524373 [TBL] [Abstract][Full Text] [Related]
40. Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers. Sawicki J; Kastor N; Xu M Opt Express; 2008 Apr; 16(8):5728-38. PubMed ID: 18542681 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]