BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19021435)

  • 21. Computer-aided diagnosis of dysplasia in Barrett's esophagus using endoscopic optical coherence tomography.
    Qi X; Sivak MV; Isenberg G; Willis JE; Rollins AM
    J Biomed Opt; 2006; 11(4):044010. PubMed ID: 16965167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets.
    Zawadzki RJ; Fuller AR; Wiley DF; Hamann B; Choi SS; Werner JS
    J Biomed Opt; 2007; 12(4):041206. PubMed ID: 17867795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis.
    Kafieh R; Rabbani H; Hajizadeh F; Ommani M
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2815-23. PubMed ID: 23722446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks.
    Gurmeric S; Isguder GG; Carlier S; Unal G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):776-85. PubMed ID: 20426182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Method for optical coherence tomography image classification using local features and earth mover's distance.
    Sun Y; Lei M
    J Biomed Opt; 2009; 14(5):054037. PubMed ID: 19895138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional high-resolution optical coherence tomography (OCT) imaging of human kidney.
    Li Q; Onozato M; Andrews PM; Paek A; Duttaroy A; Shirmahamoodi B; Jiang J; Cable A; Chen Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5741-3. PubMed ID: 19963648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated four dimensional registration and segmentation of dynamic renal MR images.
    Song T; Lee VS; Rusinek H; Wong S; Laine AF
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):758-65. PubMed ID: 17354841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast retinal layer segmentation of spectral domain optical coherence tomography images.
    Zhang T; Song Z; Wang X; Zheng H; Jia F; Wu J; Li G; Hu Q
    J Biomed Opt; 2015; 20(9):096014. PubMed ID: 26385655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic Vessel Shade-Robust Segmentation of Retinal Layers in OCT Images.
    González-López A; Ortega M; Penedo MG; Charlón P
    Stud Health Technol Inform; 2014; 207():47-54. PubMed ID: 25488210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonnegative mixed-norm preconditioning for microscopy image segmentation.
    Li K; Kanade T
    Inf Process Med Imaging; 2009; 21():362-73. PubMed ID: 19694277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motion artefact correction in retinal optical coherence tomography using local symmetry.
    Montuoro A; Wu J; Waldstein S; Gerendas B; Langs G; Simader C; Schmidt-Erfurth U
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):130-7. PubMed ID: 25485371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coherent multiscale image processing using dual-tree quaternion wavelets.
    Chan WL; Choi H; Baraniuk RG
    IEEE Trans Image Process; 2008 Jul; 17(7):1069-82. PubMed ID: 18586616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression.
    Hu Z; Niemeijer M; Abràmoft MD; Lee K; Garvin MK
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):33-40. PubMed ID: 20879380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy.
    Lee KS; Zhao H; Ibrahim SF; Meemon N; Khoudeir L; Rolland JP
    J Biomed Opt; 2012 Dec; 17(12):126006. PubMed ID: 23208217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis.
    Cheng Y; Larin KV
    Appl Opt; 2006 Dec; 45(36):9238-45. PubMed ID: 17151765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intra-retinal layer segmentation in optical coherence tomography images.
    Mishra A; Wong A; Bizheva K; Clausi DA
    Opt Express; 2009 Dec; 17(26):23719-28. PubMed ID: 20052083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart.
    Liu A; Wang R; Thornburg KL; Rugonyi S
    J Biomed Opt; 2009; 14(4):044020. PubMed ID: 19725731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images.
    Wang Z; Kyono H; Bezerra HG; Wang H; Gargesha M; Alraies C; Xu C; Schmitt JM; Wilson DL; Costa MA; Rollins AM
    J Biomed Opt; 2010; 15(6):061711. PubMed ID: 21198159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parametric imaging of cancer with optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    J Biomed Opt; 2010; 15(4):046029. PubMed ID: 20799831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography.
    Jørgensen TM; Tycho A; Mogensen M; Bjerring P; Jemec GB
    Skin Res Technol; 2008 Aug; 14(3):364-9. PubMed ID: 19159385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.