BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19021444)

  • 1. In-vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin.
    Wilmink GJ; Opalenik SR; Beckham JT; Mackanos MA; Nanney LB; Contag CH; Davidson JM; Jansen ED
    J Biomed Opt; 2008; 13(5):054066. PubMed ID: 19021444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing laser-tissue damage with bioluminescent imaging.
    Wilmink GJ; Opalenik SR; Beckham JT; Davidson JM; Jansen ED
    J Biomed Opt; 2006; 11(4):041114. PubMed ID: 16965142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology.
    Youn JI; Sweet P; Peavy GM; Venugopalan V
    Lasers Surg Med; 2006 Mar; 38(3):218-28. PubMed ID: 16453331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm.
    Youn JI; Sweet P; Peavy GM
    Lasers Surg Med; 2007 Apr; 39(4):332-40. PubMed ID: 17457836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo optical imaging of expression of vascular endothelial growth factor following laser incision in skin.
    Izzo AD; Mackanos MA; Beckham JT; Jansen ED
    Lasers Surg Med; 2001; 29(4):343-50. PubMed ID: 11746112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo analysis of heat-shock-protein-70 induction following pulsed laser irradiation in a transgenic reporter mouse.
    O'Connell-Rodwell CE; Mackanos MA; Simanovskii D; Cao YA; Bachmann MH; Schwettman HA; Contag CH
    J Biomed Opt; 2008; 13(3):030501. PubMed ID: 18601518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective laser ablation of bone based on the absorption characteristics of water and proteins.
    Spencer P; Payne JM; Cobb CM; Reinisch L; Peavy GM; Drummer DD; Suchman DL; Swafford JR
    J Periodontol; 1999 Jan; 70(1):68-74. PubMed ID: 10052773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of heat shock proteins 70 and 47 in tissues following short-pulse laser irradiation: assessment of thermal damage and healing.
    Sajjadi AY; Mitra K; Grace M
    Med Eng Phys; 2013 Oct; 35(10):1406-14. PubMed ID: 23587755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers.
    Mackanos MA; Jansen ED; Shaw BL; Sanghera JS; Aggarwal I; Katzir A
    J Biomed Opt; 2003 Oct; 8(4):583-93. PubMed ID: 14563195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics.
    Mackanos MA; Kozub JA; Jansen ED
    Phys Med Biol; 2005 Apr; 50(8):1871-83. PubMed ID: 15815101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL).
    Mackanos MA; Simanovskii D; Joos KM; Schwettman HA; Jansen ED
    Lasers Surg Med; 2007 Mar; 39(3):230-6. PubMed ID: 17304561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-dependent collagen fragmentation during mid-IR laser ablation.
    Xiao Y; Guo M; Parker K; Hutson MS
    Biophys J; 2006 Aug; 91(4):1424-32. PubMed ID: 16714345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free electron laser infrared wavelength specificity for cutaneous contraction.
    Ellis DL; Weisberg NK; Chen JS; Stricklin GP; Reinisch L
    Lasers Surg Med; 1999; 25(1):1-7. PubMed ID: 10421880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.
    Fried D; Ragadio J; Champion A
    Lasers Surg Med; 2001; 29(3):221-9. PubMed ID: 11573223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain ablation in the rat cerebral cortex using a tunable-free electron laser.
    Ovelmen-Levitt J; Straub KD; Hauger S; Szarmes E; Madey J; Pearlstein RD; Nashold BS
    Lasers Surg Med; 2003; 33(2):81-92. PubMed ID: 12913879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects.
    Mackanos MA; Kozub JA; Hachey DL; Joos KM; Ellis DL; Jansen ED
    Phys Med Biol; 2005 Apr; 50(8):1885-99. PubMed ID: 15815102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of skin lesions produced by focused, tunable, mid-infrared chalcogenide laser radiation.
    Evers M; Ha L; Casper M; Welford D; Kositratna G; Birngruber R; Manstein D
    Lasers Surg Med; 2018 Sep; 50(9):961-972. PubMed ID: 29799127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of cortical bone ablations by using infrared laser wavelengths 2.9 to 9.2 microm.
    Peavy GM; Reinisch L; Payne JT; Venugopalan V
    Lasers Surg Med; 1999; 25(5):421-34. PubMed ID: 10602135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo analysis of laser preconditioning in incisional wound healing of wild-type and HSP70 knockout mice with Raman spectroscopy.
    Makowski AJ; Davidson JM; Mahadevan-Jansen A; Jansen ED
    Lasers Surg Med; 2012 Mar; 44(3):233-44. PubMed ID: 22275297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonablative skin rejuvenation devices and the role of heat shock protein 70: results of a human skin explant model.
    Helbig D; Moebius A; Simon JC; Paasch U
    J Biomed Opt; 2010; 15(3):038002. PubMed ID: 20615048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.