These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19022415)

  • 1. Soybean proteomics and its application to functional analysis.
    Komatsu S; Ahsan N
    J Proteomics; 2009 Apr; 72(3):325-36. PubMed ID: 19022415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soybean proteomics.
    Hossain Z; Komatsu S
    Methods Mol Biol; 2014; 1072():315-31. PubMed ID: 24136532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent update on methodologies for extraction and analysis of soybean seed proteins.
    Luthria DL; Maria John KM; Marupaka R; Natarajan S
    J Sci Food Agric; 2018 Dec; 98(15):5572-5580. PubMed ID: 29971799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors.
    Mochida K; Yoshida T; Sakurai T; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Bioinformatics; 2010 Jan; 26(2):290-1. PubMed ID: 19933159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lotus japonicus: legume research in the fast lane.
    Udvardi MK; Tabata S; Parniske M; Stougaard J
    Trends Plant Sci; 2005 May; 10(5):222-8. PubMed ID: 15882654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress in Development of Tnt1 Functional Genomics Platform for Medicago truncatula and Lotus japonicus in Bulgaria.
    Revalska M; Vassileva V; Goormachtig S; Van Hautegem T; Ratet P; Iantcheva A
    Curr Genomics; 2011 Apr; 12(2):147-52. PubMed ID: 21966253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soybean proteomics for unraveling abiotic stress response mechanism.
    Hossain Z; Khatoon A; Komatsu S
    J Proteome Res; 2013 Nov; 12(11):4670-84. PubMed ID: 24016329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgenic soybeans and soybean protein analysis: an overview.
    Natarajan S; Luthria D; Bae H; Lakshman D; Mitra A
    J Agric Food Chem; 2013 Dec; 61(48):11736-43. PubMed ID: 24099420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proteomic study to identify soya allergens--the human response to transgenic versus non-transgenic soya samples.
    Batista R; Martins I; Jeno P; Ricardo CP; Oliveira MM
    Int Arch Allergy Immunol; 2007; 144(1):29-38. PubMed ID: 17496424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants.
    Libault M; Farmer A; Joshi T; Takahashi K; Langley RJ; Franklin LD; He J; Xu D; May G; Stacey G
    Plant J; 2010 Jul; 63(1):86-99. PubMed ID: 20408999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins.
    Barbosa HS; Arruda SC; Azevedo RA; Arruda MA
    Anal Bioanal Chem; 2012 Jan; 402(1):299-314. PubMed ID: 21947011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 'Omics' techniques for identifying flooding-response mechanisms in soybean.
    Komatsu S; Shirasaka N; Sakata K
    J Proteomics; 2013 Nov; 93():169-78. PubMed ID: 23313220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The soybean (Glycine max) nodulation-suppressive CLE peptide, GmRIC1, functions interspecifically in common white bean (Phaseolus vulgaris), but not in a supernodulating line mutated in the receptor PvNARK.
    Ferguson BJ; Li D; Hastwell AH; Reid DE; Li Y; Jackson SA; Gresshoff PM
    Plant Biotechnol J; 2014 Oct; 12(8):1085-97. PubMed ID: 25040127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis.
    Chen Z; Cui Q; Liang C; Sun L; Tian J; Liao H
    Proteomics; 2011 Dec; 11(24):4648-59. PubMed ID: 22002838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soybean seed protein storage vacuoles for expression of recombinant molecules.
    Vianna GR; Cunha NB; Rech EL
    Curr Opin Plant Biol; 2023 Feb; 71():102331. PubMed ID: 36603392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three sequenced legume genomes and many crop species: rich opportunities for translational genomics.
    Cannon SB; May GD; Jackson SA
    Plant Physiol; 2009 Nov; 151(3):970-7. PubMed ID: 19759344
    [No Abstract]   [Full Text] [Related]  

  • 17. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement.
    Ramalingam A; Kudapa H; Pazhamala LT; Weckwerth W; Varshney RK
    Front Plant Sci; 2015; 6():1116. PubMed ID: 26734026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of cleistogamy-associated proteins in flower buds of near-isogenic lines of soybean by differential proteomic analysis.
    Khan NA; Takahashi R; Abe J; Komatsu S
    Peptides; 2009 Dec; 30(12):2095-102. PubMed ID: 19703503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of high protein soybean (Glycine max) accessions demonstrates the contribution of novel glycinin subunits.
    Krishnan HB; Nelson RL
    J Agric Food Chem; 2011 Mar; 59(6):2432-9. PubMed ID: 21344854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System, trends and perspectives of proteomics in dicot plants Part I: Technologies in proteome establishment.
    Agrawal GK; Yonekura M; Iwahashi Y; Iwahashi H; Rakwal R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):109-23. PubMed ID: 15652802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.