These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 19022453)

  • 1. The impact and deformation of a viscoelastic drop at the air-liquid interface.
    Pregent S; Adams S; Butler MF; Waigh TA
    J Colloid Interface Sci; 2009 Mar; 331(1):163-73. PubMed ID: 19022453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial and foaming properties of prolylenglycol alginates. Effect of degree of esterification and molecular weight.
    Baeza R; Sanchez CC; Pilosof AM; Patino JM
    Colloids Surf B Biointerfaces; 2004 Aug; 36(3-4):139-45. PubMed ID: 15276629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drop deformation dynamics and gel kinetics in a co-flowing water-in-oil system.
    Walther B; Cramer C; Tiemeyer A; Hamberg L; Fischer P; Windhab EJ; Hermansson AM
    J Colloid Interface Sci; 2005 Jun; 286(1):378-86. PubMed ID: 15848441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of drops on the surface of immiscible liquids.
    Yakhshi-Tafti E; Cho HJ; Kumar R
    J Colloid Interface Sci; 2010 Oct; 350(1):373-6. PubMed ID: 20619852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emulsification in turbulent flow 2. Breakage rate constants.
    Vankova N; Tcholakova S; Denkov ND; Vulchev VD; Danner T
    J Colloid Interface Sci; 2007 Sep; 313(2):612-29. PubMed ID: 17553511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermocapillary migration of a drop: an exact solution with Newtonian interfacial rheology and stretching/shrinkage of interfacial area elements for small Marangoni numbers.
    Balasubramaniam R; Subramanian RS
    Ann N Y Acad Sci; 2004 Nov; 1027():303-10. PubMed ID: 15644363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instrument and methods for surface dilatational rheology measurements.
    Russev SC; Alexandrov N; Marinova KG; Danov KD; Denkov ND; Lyutov L; Vulchev V; Bilke-Krause C
    Rev Sci Instrum; 2008 Oct; 79(10):104102. PubMed ID: 19044732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detachment force of particles from air-liquid interfaces of films and bubbles.
    Ally J; Kappl M; Butt HJ; Amirfazli A
    Langmuir; 2010 Dec; 26(23):18135-43. PubMed ID: 21067140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shaping of gelling biopolymer drops in an elongation flow.
    Hamberg L; Walkenström P; Hermansson AM
    J Colloid Interface Sci; 2002 Aug; 252(2):297-308. PubMed ID: 16290793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics, adsorption kinetics and rheology of mixed protein-surfactant interfacial layers.
    Kotsmar C; Pradines V; Alahverdjieva VS; Aksenenko EV; Fainerman VB; Kovalchuk VI; Krägel J; Leser ME; Noskov BA; Miller R
    Adv Colloid Interface Sci; 2009 Aug; 150(1):41-54. PubMed ID: 19493522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chasing drops: following escaper and pursuer drop couple system.
    Bahadur P; Yadav PS; Chaurasia K; Leh A; Tadmor R
    J Colloid Interface Sci; 2009 Apr; 332(2):455-60. PubMed ID: 19181327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow.
    Bazhlekov IB; Anderson PD; Meijer HE
    J Colloid Interface Sci; 2006 Jun; 298(1):369-94. PubMed ID: 16412455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.
    Beesabathuni SN; Lindberg SE; Caggioni M; Wesner C; Shen AQ
    J Colloid Interface Sci; 2015 May; 445():231-242. PubMed ID: 25622048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant effects on thermocapillary interactions of deformable drops.
    Rother MA
    J Colloid Interface Sci; 2007 Dec; 316(2):699-711. PubMed ID: 17889896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid drops impacting superamphiphobic coatings.
    Deng X; Schellenberger F; Papadopoulos P; Vollmer D; Butt HJ
    Langmuir; 2013 Jun; 29(25):7847-56. PubMed ID: 23697383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses.
    van Hinsberg NP; Budakli M; Göhler S; Berberović E; Roisman IV; Gambaryan-Roisman T; Tropea C; Stephan P
    J Colloid Interface Sci; 2010 Oct; 350(1):336-43. PubMed ID: 20609447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFD evaluation of drop retraction methods for the measurement of interfacial tension of surfactant-laden drops.
    Velankar S; Zhou H; Jeon HK; Macosko CW
    J Colloid Interface Sci; 2004 Apr; 272(1):172-85. PubMed ID: 14985035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological characterization of poly(ethylene oxide) solutions of different molecular weights.
    Ebagninin KW; Benchabane A; Bekkour K
    J Colloid Interface Sci; 2009 Aug; 336(1):360-7. PubMed ID: 19406425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How microstructures affect air film dynamics prior to drop impact.
    van der Veen RC; Hendrix MH; Tran T; Sun C; Tsai PA; Lohse D
    Soft Matter; 2014 Jun; 10(21):3703-7. PubMed ID: 24740526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.