These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 19022578)

  • 1. Energy efficient--advanced oxidation process for treatment of cyanide containing automobile industry wastewater.
    Mudliar R; Umare SS; Ramteke DS; Wate SR
    J Hazard Mater; 2009 May; 164(2-3):1474-9. PubMed ID: 19022578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of IGCC power station effluents by physico-chemical and advanced oxidation processes.
    Durán A; Monteagudo JM; Sanmartín I; García-Peña F; Coca P
    J Environ Manage; 2009 Mar; 90(3):1370-6. PubMed ID: 18801608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of chemical oxidation in combined chemical-physical and biological processes: experiences of industrial wastewater treatment.
    Bertanza G; Collivignarelli C; Pedrazzani R
    Water Sci Technol; 2001; 44(5):109-16. PubMed ID: 11695447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of cyanide in aqueous solution by chemical and photochemical process.
    Sarla M; Pandit M; Tyagi DK; Kapoor JC
    J Hazard Mater; 2004 Dec; 116(1-2):49-56. PubMed ID: 15561362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced oxidation processes in azo dye wastewater treatment.
    Papić S; Koprivanac N; Bozić AL; Vujević D; Dragicević SK; Kusić H; Peternel I
    Water Environ Res; 2006 Jun; 78(6):572-9. PubMed ID: 16894983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different advanced oxidation process to reduce toxicity and mineralisation of tannery wastewater.
    Schrank SG; José HJ; Moreira RF; Schröder HF
    Water Sci Technol; 2004; 50(5):329-34. PubMed ID: 15497865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Fenton oxidation to cosmetic wastewaters treatment.
    Bautista P; Mohedano AF; Gilarranz MA; Casas JA; Rodriguez JJ
    J Hazard Mater; 2007 May; 143(1-2):128-34. PubMed ID: 17034937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of xenobiotics originating from the textile preparation, dyeing, and finishing industry using ozonation and advanced oxidation.
    Arslan-Alaton I; Alaton I
    Ecotoxicol Environ Saf; 2007 Sep; 68(1):98-107. PubMed ID: 17178160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol.
    Parga JR; Shukla SS; Carrillo-Pedroza FR
    Waste Manag; 2003; 23(2):183-91. PubMed ID: 12623093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of advanced oxidation processes: present and future.
    Suty H; De Traversay C; Cost M
    Water Sci Technol; 2004; 49(4):227-33. PubMed ID: 15077976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation.
    Badawy MI; El Gohary F; Ghaly MY; Ali ME
    J Hazard Mater; 2009 Sep; 169(1-3):673-9. PubMed ID: 19457611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of advanced oxidation processes for the treatment of cyanide containing effluent.
    Kim YJ; Qureshi TI; Min KS
    Environ Technol; 2003 Oct; 24(10):1269-76. PubMed ID: 14669807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process.
    Kurt U; Apaydin O; Gonullu MT
    J Hazard Mater; 2007 May; 143(1-2):33-40. PubMed ID: 17014953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photooxidative treatment of sulfurous water for its potabilization.
    Hernández F; Geissler G
    Photochem Photobiol; 2005; 81(3):636-40. PubMed ID: 15745428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Destruction of organic pollutants in reusable wastewater using advanced oxidation technology.
    Yang C; Xu YR; Teo KC; Goh NK; Chia LS; Xie RJ
    Chemosphere; 2005 Apr; 59(3):441-5. PubMed ID: 15763097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of a synthetic solution of galvanization effluent via the conversion of sodium cyanide into an insoluble safe complex.
    Ismail I; Abdel-Monem N; Fateen SE; Abdelazeem W
    J Hazard Mater; 2009 Jul; 166(2-3):978-83. PubMed ID: 19135781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wastewater recycling: application of ozone based treatments to secondary effluents.
    Rivas J; Gimeno O; Beltrán F
    Chemosphere; 2009 Feb; 74(6):854-9. PubMed ID: 19013633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidation of the behavior of tannery wastewater under advanced oxidation conditions.
    Schrank SG; José HJ; Moreira RF; Schröder HF
    Chemosphere; 2004 Aug; 56(5):411-23. PubMed ID: 15212906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.
    Pueyo N; Miguel N; Ovelleiro JL; Ormad MP
    Water Sci Technol; 2016; 74(2):482-90. PubMed ID: 27438254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbicidal efficacy of an advanced oxidation process using ozone/hydrogen peroxide in water treatment.
    Sommer R; Pribil W; Pfleger S; Haider T; Werderitsch M; Gehringer P
    Water Sci Technol; 2004; 50(1):159-64. PubMed ID: 15318503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.