BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 19023046)

  • 1. Dynamic proteomics of individual cancer cells in response to a drug.
    Cohen AA; Geva-Zatorsky N; Eden E; Frenkel-Morgenstern M; Issaeva I; Sigal A; Milo R; Cohen-Saidon C; Liron Y; Kam Z; Cohen L; Danon T; Perzov N; Alon U
    Science; 2008 Dec; 322(5907):1511-6. PubMed ID: 19023046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic proteomics for investigating the response of individual cancer cells under drug action.
    Li RX; Zeng R
    Expert Rev Proteomics; 2009 Feb; 6(1):19-21. PubMed ID: 19210123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems biology. Cast of 1000 proteins shines in movies of cancer cells.
    Kaiser J
    Science; 2008 Nov; 322(5905):1176-7. PubMed ID: 19023053
    [No Abstract]   [Full Text] [Related]  

  • 4. Dynamic proteomics reveals bimodal protein dynamics of cancer cells in response to HSP90 inhibitor.
    Zimmer A; Amar-Farkash S; Danon T; Alon U
    BMC Syst Biol; 2017 Mar; 11(1):33. PubMed ID: 28270142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of flexibility and long range communication on the function of human topoisomerase I.
    Chillemi G; Fiorani P; Bruselles A; Castelli S; Campagna A; Sarra O; Tesauro C; Fiorentini M; Vassallo O; D'Annessa I; Santoleri S; Desideri A
    Ital J Biochem; 2007 Jun; 56(2):110-4. PubMed ID: 17722651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression profiles as biomarkers for the prediction of chemotherapy drug response in human tumour cells.
    Parissenti AM; Hembruff SL; Villeneuve DJ; Veitch Z; Guo B; Eng J
    Anticancer Drugs; 2007 Jun; 18(5):499-523. PubMed ID: 17414620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins.
    Sigal A; Milo R; Cohen A; Geva-Zatorsky N; Klein Y; Alaluf I; Swerdlin N; Perzov N; Danon T; Liron Y; Raveh T; Carpenter AE; Lahav G; Alon U
    Nat Methods; 2006 Jul; 3(7):525-31. PubMed ID: 16791210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and cytotoxic activity of new 9-substituted camptothecins.
    Dallavalle S; Rocchetta DG; Musso L; Merlini L; Morini G; Penco S; Tinelli S; Beretta GL; Zunino F
    Bioorg Med Chem Lett; 2008 May; 18(9):2781-7. PubMed ID: 18434153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antitumour drugs impede DNA uncoiling by topoisomerase I.
    Koster DA; Palle K; Bot ES; Bjornsti MA; Dekker NH
    Nature; 2007 Jul; 448(7150):213-7. PubMed ID: 17589503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of PARP activity by PJ-34 leads to growth impairment and cell death associated with aberrant mitotic pattern and nucleolar actin accumulation in M14 melanoma cell line.
    Chevanne M; Zampieri M; Caldini R; Rizzo A; Ciccarone F; Catizone A; D'Angelo C; Guastafierro T; Biroccio A; Reale A; Zupi G; Caiafa P
    J Cell Physiol; 2010 Feb; 222(2):401-10. PubMed ID: 19890834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CKD-602, a camptothecin derivative, inhibits proliferation and induces apoptosis in glioma cell lines.
    Kim YY; Park CK; Kim SK; Phi JH; Kim JH; Kim CY; Wang KC; Cho BK
    Oncol Rep; 2009 Jun; 21(6):1413-9. PubMed ID: 19424618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycolytic flux occurs in Drosophila melanogaster recovering from camptothecin treatment.
    Hull R; Ntwasa MM
    Anticancer Drugs; 2010 Nov; 21(10):945-57. PubMed ID: 20717003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective Brca2 influences topoisomerase I activity in mammalian cells.
    Rahden-Staroń I; Szumiło M; Grosicka E; Kraakman van der Zwet M; Zdzienicka MZ
    Acta Biochim Pol; 2003; 50(1):139-44. PubMed ID: 12673354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage.
    Boisvert FM; Lam YW; Lamont D; Lamond AI
    Mol Cell Proteomics; 2010 Mar; 9(3):457-70. PubMed ID: 20026476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relevance of extracellular and intracellular interactions of camptothecins as determinants of antitumor activity.
    Beretta GL; Zunino F
    Biochem Pharmacol; 2007 Nov; 74(10):1437-44. PubMed ID: 17540344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA topoisomerase i as a transcription protein and a lethal cellular toxin.
    Lotito L; Ferri F; Russo A; Capranico G
    Ital J Biochem; 2007 Jun; 56(2):122-9. PubMed ID: 17722653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined application of camptothecin and the guanylate cyclase activator YC-1: Impact on cell death and apoptosis-related proteins in ovarian carcinoma cell lines.
    Lee SJ; Kim YJ; Lee CS; Bae J
    Chem Biol Interact; 2009 Oct; 181(2):185-92. PubMed ID: 19481069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistence of camptothecin analog-topoisomerase I-DNA ternary complexes: a molecular dynamics study.
    Siu FM; Che CM
    J Am Chem Soc; 2008 Dec; 130(52):17928-37. PubMed ID: 19035632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine acetylation targets protein complexes and co-regulates major cellular functions.
    Choudhary C; Kumar C; Gnad F; Nielsen ML; Rehman M; Walther TC; Olsen JV; Mann M
    Science; 2009 Aug; 325(5942):834-40. PubMed ID: 19608861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human DNA topoisomerase inhibitors from Potentilla argentea and their cytotoxic effect against MCF-7.
    Tomczyk M; Drozdowska D; Bielawska A; Bielawski K; Gudej J
    Pharmazie; 2008 May; 63(5):389-93. PubMed ID: 18557426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.