BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 19023402)

  • 21. DNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae.
    Budd ME; Campbell JL
    Mol Cell Biol; 1995 Apr; 15(4):2173-9. PubMed ID: 7891712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NHEJ Contributes to the Fast Repair of Radiation-induced DNA Double-strand Breaks at Late Prophase I Telomeres.
    Ahmed EA; Rosemann M; Scherthan H
    Health Phys; 2018 Jul; 115(1):102-107. PubMed ID: 29787435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair.
    Mazina OM; Keskin H; Hanamshet K; Storici F; Mazin AV
    Mol Cell; 2017 Jul; 67(1):19-29.e3. PubMed ID: 28602639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of nuclear architecture on the efficiency of double-strand break repair.
    Agmon N; Liefshitz B; Zimmer C; Fabre E; Kupiec M
    Nat Cell Biol; 2013 Jun; 15(6):694-9. PubMed ID: 23644470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis.
    Chan K; Resnick MA; Gordenin DA
    DNA Repair (Amst); 2013 Nov; 12(11):878-89. PubMed ID: 23988736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging non-canonical roles for the Rad51-Rad52 interaction in response to double-strand breaks in yeast.
    Ngo K; Epum EA; Friedman KL
    Curr Genet; 2020 Oct; 66(5):917-926. PubMed ID: 32399607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA.
    Fry RC; DeMott MS; Cosgrove JP; Begley TJ; Samson LD; Dedon PC
    BMC Genomics; 2006 Dec; 7():313. PubMed ID: 17163986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.
    Lee K; Lee SE
    Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The fate of irreparable DNA double-strand breaks and eroded telomeres at the nuclear periphery.
    Lisby M; Teixeira T; Gilson E; Géli V
    Nucleus; 2010; 1(2):158-61. PubMed ID: 21326947
    [No Abstract]   [Full Text] [Related]  

  • 30. The Mph1 helicase can promote telomere uncapping and premature senescence in budding yeast.
    Luke-Glaser S; Luke B
    PLoS One; 2012; 7(7):e42028. PubMed ID: 22848695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Nup84 complex coordinates the DNA damage response to warrant genome integrity.
    Gaillard H; Santos-Pereira JM; Aguilera A
    Nucleic Acids Res; 2019 May; 47(8):4054-4067. PubMed ID: 30715474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Migrating bubble during break-induced replication drives conservative DNA synthesis.
    Saini N; Ramakrishnan S; Elango R; Ayyar S; Zhang Y; Deem A; Ira G; Haber JE; Lobachev KS; Malkova A
    Nature; 2013 Oct; 502(7471):389-92. PubMed ID: 24025772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae.
    Yi DG; Kim MJ; Choi JE; Lee J; Jung J; Huh WK; Chung WH
    Free Radic Biol Med; 2016 Dec; 101():424-433. PubMed ID: 27838435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants.
    Maringele L; Lydall D
    Genes Dev; 2002 Aug; 16(15):1919-33. PubMed ID: 12154123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slx4 and Rtt107 control checkpoint signalling and DNA resection at double-strand breaks.
    Dibitetto D; Ferrari M; Rawal CC; Balint A; Kim T; Zhang Z; Smolka MB; Brown GW; Marini F; Pellicioli A
    Nucleic Acids Res; 2016 Jan; 44(2):669-82. PubMed ID: 26490958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assaying Mutations Associated With Gene Conversion Repair of a Double-Strand Break.
    Dwivedi G; Haber JE
    Methods Enzymol; 2018; 601():145-160. PubMed ID: 29523231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detecting repair intermediates in vivo: effects of DNA damage response genes on single-stranded DNA accumulation at uncapped telomeres in budding yeast.
    Zubko MK; Maringele L; Foster SS; Lydall D
    Methods Enzymol; 2006; 409():285-300. PubMed ID: 16793407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymerases ε and ∂ repair dysfunctional telomeres facilitated by salt.
    Ivanova IG; Maringele L
    Nucleic Acids Res; 2016 May; 44(8):3728-38. PubMed ID: 26883631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair.
    Chen C; Umezu K; Kolodner RD
    Mol Cell; 1998 Jul; 2(1):9-22. PubMed ID: 9702187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-nucleotide resolution dynamic repair maps of UV damage in
    Li W; Adebali O; Yang Y; Selby CP; Sancar A
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3408-E3415. PubMed ID: 29581276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.