These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 19023480)

  • 1. Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability.
    Abate AR; Krummel AT; Lee D; Marquez M; Holtze C; Weitz DA
    Lab Chip; 2008 Dec; 8(12):2157-60. PubMed ID: 19023480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel dome-shaped structures for high-efficiency patterning of individual microbeads in a microfluidic device.
    Lim CT; Zhang Y
    Small; 2007 Apr; 3(4):573-9. PubMed ID: 17351990
    [No Abstract]   [Full Text] [Related]  

  • 3. Bioactive heparin immobilized onto microfluidic channels in poly(dimethylsiloxane) results in hydrophilic surface properties.
    Thorslund S; Sanchez J; Larsson R; Nikolajeff F; Bergquist J
    Colloids Surf B Biointerfaces; 2005 Dec; 46(4):240-7. PubMed ID: 16352425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography printing to locally control wettability.
    Zheng Z; Azzaroni O; Zhou F; Huck WT
    J Am Chem Soc; 2006 Jun; 128(24):7730-1. PubMed ID: 16771474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-charge lithography for direct PDMS micro-patterning.
    Grilli S; Vespini V; Ferraro P
    Langmuir; 2008 Dec; 24(23):13262-5. PubMed ID: 18986187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A miniaturized high-voltage integrated power supply for portable microfluidic applications.
    Erickson D; Sinton D; Li D
    Lab Chip; 2004 Apr; 4(2):87-90. PubMed ID: 15052345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional droplet-based surface plasmon resonance imaging using electrowetting-on-dielectric microfluidics.
    Malic L; Veres T; Tabrizian M
    Lab Chip; 2009 Feb; 9(3):473-5. PubMed ID: 19156299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Lock-and-key" geometry effect of patterned surfaces: wettability and switching of adhesive force.
    Huang XJ; Kim DH; Im M; Lee JH; Yoon JB; Choi YK
    Small; 2009 Jan; 5(1):90-4. PubMed ID: 19040219
    [No Abstract]   [Full Text] [Related]  

  • 9. Solvent fuming dual-responsive switching of both wettability and solid-state luminescence in silole film.
    Heng L; Dong Y; Zhai J; Tang B; Jiang L
    Langmuir; 2008 Mar; 24(5):2157-61. PubMed ID: 18205418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiometric titrations in a poly(dimethylsiloxane)-based microfluidic device.
    Ferrigno R; Lee JN; Jiang X; Whitesides GM
    Anal Chem; 2004 Apr; 76(8):2273-80. PubMed ID: 15080738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plug and play microfluidic device.
    Fujii T; Sando Y; Higashino K; Fujii Y
    Lab Chip; 2003 Aug; 3(3):193-7. PubMed ID: 15100773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of surface energy and water wettability in aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel surfaces in the control of marine biofouling.
    Bennett SM; Finlay JA; Gunari N; Wells DD; Meyer AE; Walker GC; Callow ME; Callow JA; Bright FV; Detty MR
    Biofouling; 2010; 26(2):235-46. PubMed ID: 19960390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of PDMS-modified glass from cast-and-peel fabrication.
    Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D
    Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simplified method for capillary embedment into microfluidic devices - exemplified by sol-gel-based preconcentration.
    Thorslund S; Johannesson N; Nikolajeff F; Bergquist J
    Electrophoresis; 2007 Dec; 28(24):4758-64. PubMed ID: 18008304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterning enzymes inside microfluidic channels via photoattachment chemistry.
    Holden MA; Jung SY; Cremer PS
    Anal Chem; 2004 Apr; 76(7):1838-43. PubMed ID: 15053641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous, oscillatory liquid transport in surface tension-confined microfluidics.
    Chao SH; Meldrum DR
    Lab Chip; 2009 Apr; 9(7):867-9. PubMed ID: 19294295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote control of reversible localized protein adsorption in microfluidic devices.
    Hao N; Li JY; Xiong M; Xia XH; Xu JJ; Chen HY
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11869-73. PubMed ID: 25068799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Durable, region-specific protein patterning in microfluidic channels.
    Fiddes LK; Chan HK; Lau B; Kumacheva E; Wheeler AR
    Biomaterials; 2010 Jan; 31(2):315-20. PubMed ID: 19800682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.