These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19023480)

  • 21. Emulsions stabilised by food colloid particles: role of particle adsorption and wettability at the liquid interface.
    Paunov VN; Cayre OJ; Noble PF; Stoyanov SD; Velikov KP; Golding M
    J Colloid Interface Sci; 2007 Aug; 312(2):381-9. PubMed ID: 17449055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colloid lithography-induced polydimethylsiloxane microstructures and their application to cell patterning.
    Yi DK; Kim MJ; Turner L; Breuer KS; Kim DY
    Biotechnol Lett; 2006 Feb; 28(3):169-73. PubMed ID: 16489494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering transfer of micro- and nanometer-scale features by surface energy modification.
    Cortese B; Piliego C; Viola I; D'Amone S; Cingolani R; Gigli G
    Langmuir; 2009 Jun; 25(12):7025-31. PubMed ID: 19405480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips.
    Yu L; Huang H; Dong X; Wu D; Qin J; Lin B
    Electrophoresis; 2008 Dec; 29(24):5055-60. PubMed ID: 19130590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biocompatible patterning of proteins on wettability gradient surface by thermo-transfer printing.
    Kim S; Ryu YS; Suh JH; Keum CM; Sohn Y; Lee SD
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6069-71. PubMed ID: 25936059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of 3-D curved microstructures by constrained gas expansion and photopolymerization.
    Chan-Park MB; Yang C; Guo X; Chen L; Yoon SF; Chun JH
    Langmuir; 2008 May; 24(10):5492-9. PubMed ID: 18442275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large area UV casting using diverse polyacrylates of microchannels separated by high aspect ratio microwalls.
    Zhou WX; Chan-Park MB
    Lab Chip; 2005 May; 5(5):512-8. PubMed ID: 15856087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuneable separation in elastomeric microfluidics devices.
    Beech JP; Tegenfeldt JO
    Lab Chip; 2008 May; 8(5):657-9. PubMed ID: 18432332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct patterning of composite biocompatible microstructures using microfluidics.
    Cheung YK; Gillette BM; Zhong M; Ramcharan S; Sia SK
    Lab Chip; 2007 May; 7(5):574-9. PubMed ID: 17476375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving agglutination tests by working in microfluidic channels.
    Degré G; Brunet E; Dodge A; Tabeling P
    Lab Chip; 2005 Jun; 5(6):691-4. PubMed ID: 15915264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Principles of droplet electrohydrodynamics for lab-on-a-chip.
    Zeng J; Korsmeyer T
    Lab Chip; 2004 Aug; 4(4):265-77. PubMed ID: 15269791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of pressure-driven air bubble elimination in a microfluidic device.
    Kang JH; Kim YC; Park JK
    Lab Chip; 2008 Jan; 8(1):176-8. PubMed ID: 18094777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled microfluidic reconstitution of functional protein from an anhydrous storage depot.
    Garcia E; Kirkham JR; Hatch AV; Hawkins KR; Yager P
    Lab Chip; 2004 Feb; 4(1):78-82. PubMed ID: 15007445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic PDMS on paper (POP) devices.
    Shangguan JW; Liu Y; Pan JB; Xu BY; Xu JJ; Chen HY
    Lab Chip; 2016 Dec; 17(1):120-127. PubMed ID: 27883132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel approach to determine the efficacy of patterned surfaces for biofouling control in relation to its microfluidic environment.
    Halder P; Nasabi M; Lopez FJ; Jayasuriya N; Bhattacharya S; Deighton M; Mitchell A; Bhuiyan MA
    Biofouling; 2013; 29(6):697-713. PubMed ID: 23789960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Patterning microfluidic device wettability using flow confinement.
    Abate AR; Thiele J; Weinhart M; Weitz DA
    Lab Chip; 2010 Jul; 10(14):1774-6. PubMed ID: 20490412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flowing lattices of bubbles as tunable, self-assembled diffraction gratings.
    Hashimoto M; Mayers B; Garstecki P; Whitesides GM
    Small; 2006 Nov; 2(11):1292-8. PubMed ID: 17192976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible manipulation of microfluids using optically regulated adsorption/desorption of hydrophobic materials.
    Nagai H; Irie T; Takahashi J; Wakida S
    Biosens Bioelectron; 2007 Apr; 22(9-10):1968-73. PubMed ID: 17027249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface patterning of (bio)molecules onto the inner wall of fused-silica capillary tubes.
    Dendane N; Hoang A; Renaudet O; Vinet F; Dumy P; Defrancq E
    Lab Chip; 2008 Dec; 8(12):2161-3. PubMed ID: 19023481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-brownian microrheology of a fluid-gel interface.
    Hobbie EK; Lin-Gibson S; Kumar S
    Phys Rev Lett; 2008 Feb; 100(7):076001. PubMed ID: 18352570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.