These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19023487)

  • 81. Immunodominance and recognition of intracellular pathogens.
    Wilson EH; Hunter CA
    J Infect Dis; 2008 Dec; 198(11):1579-81. PubMed ID: 18922096
    [No Abstract]   [Full Text] [Related]  

  • 82. Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms.
    Clausell-Tormos J; Lieber D; Baret JC; El-Harrak A; Miller OJ; Frenz L; Blouwolff J; Humphry KJ; Köster S; Duan H; Holtze C; Weitz DA; Griffiths AD; Merten CA
    Chem Biol; 2008 May; 15(5):427-37. PubMed ID: 18482695
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Virus analysis by electrophoresis on a microfluidic chip.
    Weiss VU; Kolivoska V; Kremser L; Gas B; Blaas D; Kenndler E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Dec; 860(2):173-9. PubMed ID: 18006393
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Sheathless focusing of microbeads and blood cells based on hydrophoresis.
    Choi S; Song S; Choi C; Park JK
    Small; 2008 May; 4(5):634-41. PubMed ID: 18383190
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells.
    Deutsch M; Deutsch A; Shirihai O; Hurevich I; Afrimzon E; Shafran Y; Zurgil N
    Lab Chip; 2006 Aug; 6(8):995-1000. PubMed ID: 16874368
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers.
    Murthy SK; Sin A; Tompkins RG; Toner M
    Langmuir; 2004 Dec; 20(26):11649-55. PubMed ID: 15595794
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Reconfigurable microfluidic device with integrated antibody arrays for capture, multiplexed stimulation, and cytokine profiling of human monocytes.
    Vu T; Rahimian A; Stybayeva G; Gao Y; Kwa T; Van de Water J; Revzin A
    Biomicrofluidics; 2015 Jul; 9(4):044115. PubMed ID: 26339315
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Development of a microfluidic device for the maintenance and interrogation of viable tissue biopsies.
    Hattersley SM; Dyer CE; Greenman J; Haswell SJ
    Lab Chip; 2008 Nov; 8(11):1842-6. PubMed ID: 18941683
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Tumor-on-a-chip: a microfluidic model to study cell response to environmental gradients.
    Ayuso JM; Virumbrales-Munoz M; McMinn PH; Rehman S; Gomez I; Karim MR; Trusttchel R; Wisinski KB; Beebe DJ; Skala MC
    Lab Chip; 2019 Oct; 19(20):3461-3471. PubMed ID: 31506657
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Automated control of local solution environments in open-volume microfluidics.
    Bridle H; Olofsson J; Jesorka A; Orwar O
    Anal Chem; 2007 Dec; 79(24):9286-93. PubMed ID: 18001008
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Photodegradable hydrogels for capture, detection, and release of live cells.
    Shin DS; You J; Rahimian A; Vu T; Siltanen C; Ehsanipour A; Stybayeva G; Sutcliffe J; Revzin A
    Angew Chem Int Ed Engl; 2014 Jul; 53(31):8221-4. PubMed ID: 24931301
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Soft lithography: masters on demand.
    Abdelgawad M; Watson MW; Young EW; Mudrik JM; Ungrin MD; Wheeler AR
    Lab Chip; 2008 Aug; 8(8):1379-85. PubMed ID: 18651082
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Parallel affinity-based isolation of leukocyte subsets using microfluidics: application for stroke diagnosis.
    Pullagurla SR; Witek MA; Jackson JM; Lindell MA; Hupert ML; Nesterova IV; Baird AE; Soper SA
    Anal Chem; 2014 Apr; 86(8):4058-65. PubMed ID: 24650222
    [TBL] [Abstract][Full Text] [Related]  

  • 94. pH controlled staining of CD4(+) and CD19(+) cells within functionalized microfluidic channel.
    Mortato M; Blasi L; Barbarella G; Argentiere S; Gigli G
    Biomicrofluidics; 2012; 6(4):44107. PubMed ID: 24191176
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Flow control in microfluidics: are the workhorse flows adequate?
    Pennathur S
    Lab Chip; 2008 Mar; 8(3):383-7. PubMed ID: 18305853
    [No Abstract]   [Full Text] [Related]  

  • 96. A mathematical method for extracting cell secretion rate from affinity biosensors continuously monitoring cell activity.
    Gao Y; Zhou Q; Matharu Z; Liu Y; Kwa T; Revzin A
    Biomicrofluidics; 2014 Mar; 8(2):021501. PubMed ID: 24803956
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Effect of Temperature and Flow Rate on the Cell-Free Area in the Microfluidic Channel.
    Rodríguez-Villarreal AI; Carmona-Flores M; Colomer-Farrarons J
    Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33546403
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A Microfluidic Chip for Studies of the Dynamics of Antibiotic Resistance Selection in Bacterial Biofilms.
    Tang PC; Eriksson O; Sjögren J; Fatsis-Kavalopoulos N; Kreuger J; Andersson DI
    Front Cell Infect Microbiol; 2022; 12():896149. PubMed ID: 35619647
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Biosensors to Monitor Cell Activity in 3D Hydrogel-Based Tissue Models.
    Fedi A; Vitale C; Giannoni P; Caluori G; Marrella A
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214418
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis.
    Kartikasari AER; Huertas CS; Mitchell A; Plebanski M
    Front Oncol; 2021; 11():692142. PubMed ID: 34307156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.