These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 19023488)
1. Tissue reconstruction in 3D-spheroids from rodent retina in a motion-free, bioreactor-based microstructure. Rieke M; Gottwald E; Weibezahn KF; Layer PG Lab Chip; 2008 Dec; 8(12):2206-13. PubMed ID: 19023488 [TBL] [Abstract][Full Text] [Related]
2. Cell-by-cell reconstruction in reaggregates from neonatal gerbil retina begins from the inner retina and is promoted by retinal pigmented epithelium. Bytyqi AH; Bachmann G; Rieke M; Paraoanu LE; Layer PG Eur J Neurosci; 2007 Sep; 26(6):1560-74. PubMed ID: 17880391 [TBL] [Abstract][Full Text] [Related]
3. On the role of Müller glia cells in histogenesis: only retinal spheroids, but not tectal, telencephalic and cerebellar spheroids develop histotypical patterns. Willbold E; Berger J; Reinicke M; Wolburg H J Hirnforsch; 1997; 38(3):383-96. PubMed ID: 9350510 [TBL] [Abstract][Full Text] [Related]
5. Lateral and radial growth uncoupled in reaggregated retinospheroids of embryonic avian retina. Willbold E; Mansky P; Layer PG Int J Dev Biol; 1996 Dec; 40(6):1151-9. PubMed ID: 9032020 [TBL] [Abstract][Full Text] [Related]
6. Basic fibroblast growth factor increases the precursor pool of photoreceptors, but inhibits their differentiation and apoptosis in chicken retinal reaggregates. Frohns F; Mager M; Layer PG Eur J Neurosci; 2009 May; 29(10):1931-42. PubMed ID: 19453639 [TBL] [Abstract][Full Text] [Related]
7. Effect of microwell chip structure on cell microsphere production of various animal cells. Sakai Y; Yoshida S; Yoshiura Y; Mori R; Tamura T; Yahiro K; Mori H; Kanemura Y; Yamasaki M; Nakazawa K J Biosci Bioeng; 2010 Aug; 110(2):223-9. PubMed ID: 20547385 [TBL] [Abstract][Full Text] [Related]
8. An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids. Anada T; Fukuda J; Sai Y; Suzuki O Biomaterials; 2012 Nov; 33(33):8430-41. PubMed ID: 22940219 [TBL] [Abstract][Full Text] [Related]
9. Artificial design of three-dimensional retina-like tissue from dissociated cells of the mammalian retina by rotation-mediated cell aggregation. Rothermel A; Biedermann T; Weigel W; Kurz R; Rüffer M; Layer PG; Robitzki AA Tissue Eng; 2005; 11(11-12):1749-56. PubMed ID: 16411820 [TBL] [Abstract][Full Text] [Related]
10. A multicellular spheroid formation and extraction chip using removable cell trapping barriers. Jin HJ; Cho YH; Gu JM; Kim J; Oh YS Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070 [TBL] [Abstract][Full Text] [Related]
11. Rapid, large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver. Nyberg SL; Hardin J; Amiot B; Argikar UA; Remmel RP; Rinaldo P Liver Transpl; 2005 Aug; 11(8):901-10. PubMed ID: 16035089 [TBL] [Abstract][Full Text] [Related]
12. GDNF regulates chicken rod photoreceptor development and survival in reaggregated histotypic retinal spheres. Rothermel A; Layer PG Invest Ophthalmol Vis Sci; 2003 May; 44(5):2221-8. PubMed ID: 12714664 [TBL] [Abstract][Full Text] [Related]
13. A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Gottwald E; Giselbrecht S; Augspurger C; Lahni B; Dambrowsky N; Truckenmüller R; Piotter V; Gietzelt T; Wendt O; Pfleging W; Welle A; Rolletschek A; Wobus AM; Weibezahn KF Lab Chip; 2007 Jun; 7(6):777-85. PubMed ID: 17538721 [TBL] [Abstract][Full Text] [Related]
14. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip. Torisawa YS; Takagi A; Nashimoto Y; Yasukawa T; Shiku H; Matsue T Biomaterials; 2007 Jan; 28(3):559-66. PubMed ID: 16989897 [TBL] [Abstract][Full Text] [Related]
15. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Lin RZ; Chang HY Biotechnol J; 2008 Oct; 3(9-10):1172-84. PubMed ID: 18566957 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional bioreactor cultures: a useful dynamic model for the study of cellular interactions. Konstantinov SM; Mindova MM; Gospodinov PT; Genova PI Ann N Y Acad Sci; 2004 Dec; 1030():103-15. PubMed ID: 15659786 [TBL] [Abstract][Full Text] [Related]
17. Electromagnetic exposure of scaffold-free three-dimensional cell culture systems. Daus AW; Goldhammer M; Layer PG; Thielemann C Bioelectromagnetics; 2011 Jul; 32(5):351-9. PubMed ID: 21280061 [TBL] [Abstract][Full Text] [Related]
18. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. Ivascu A; Kubbies M J Biomol Screen; 2006 Dec; 11(8):922-32. PubMed ID: 16973921 [TBL] [Abstract][Full Text] [Related]
19. Process simulation in a mechatronic bioreactor device with speed-regulated motors for growing of three-dimensional cell cultures. Mihailova M; Trenev V; Genova P; Konstantinov S Ann N Y Acad Sci; 2006 Dec; 1091():470-89. PubMed ID: 17341637 [TBL] [Abstract][Full Text] [Related]
20. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models. Kloss D; Kurz R; Jahnke HG; Fischer M; Rothermel A; Anderegg U; Simon JC; Robitzki AA Biosens Bioelectron; 2008 May; 23(10):1473-80. PubMed ID: 18289841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]