These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19023563)

  • 1. Modulation of butyrate transport in Caco-2 cells.
    Gonçalves P; Araújo JR; Pinho MJ; Martel F
    Naunyn Schmiedebergs Arch Pharmacol; 2009 Apr; 379(4):325-36. PubMed ID: 19023563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of butyrate uptake by nontransformed intestinal epithelial cell lines.
    Gonçalves P; Araújo JR; Martel F
    J Membr Biol; 2011 Mar; 240(1):35-46. PubMed ID: 21286694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate.
    Ritzhaupt A; Wood IS; Ellis A; Hosie KB; Shirazi-Beechey SP
    J Physiol; 1998 Dec; 513 ( Pt 3)(Pt 3):719-32. PubMed ID: 9824713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1.
    Hadjiagapiou C; Schmidt L; Dudeja PK; Layden TJ; Ramaswamy K
    Am J Physiol Gastrointest Liver Physiol; 2000 Oct; 279(4):G775-80. PubMed ID: 11005765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional activity of a monocarboxylate transporter, MCT1, in the human retinal pigmented epithelium cell line, ARPE-19.
    Majumdar S; Gunda S; Pal D; Mitra AK
    Mol Pharm; 2005; 2(2):109-17. PubMed ID: 15804185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of n-butyrate uptake in the human proximal colonic basolateral membranes.
    Tyagi S; Venugopalakrishnan J; Ramaswamy K; Dudeja PK
    Am J Physiol Gastrointest Liver Physiol; 2002 Apr; 282(4):G676-82. PubMed ID: 11897627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorption of folate by Caco-2 cells is not affected by high glucose concentration.
    Martel F; Gonçalves P; Azevedo I
    Eur J Pharmacol; 2006 Dec; 551(1-3):19-26. PubMed ID: 17034785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of short-chain fatty acid uptake by apical membrane vesicles of rat distal colon.
    Mascolo N; Rajendran VM; Binder HJ
    Gastroenterology; 1991 Aug; 101(2):331-8. PubMed ID: 2065907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep.
    Aschenbach JR; Bilk S; Tadesse G; Stumpff F; Gäbel G
    Am J Physiol Gastrointest Liver Physiol; 2009 May; 296(5):G1098-107. PubMed ID: 19264953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of glucose uptake in a human choriocarcinoma cell line (BeWo) by dietary bioactive compounds and drugs of abuse.
    Araújo JR; Gonçalves P; Martel F
    J Biochem; 2008 Aug; 144(2):177-86. PubMed ID: 18424810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of butyrate uptake by the primary bile salt chenodeoxycholic acid in intestinal epithelial cells.
    Gonçalves P; Catarino T; Gregório I; Martel F
    J Cell Biochem; 2012 Sep; 113(9):2937-47. PubMed ID: 22552910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line.
    Kekuda R; Manoharan P; Baseler W; Sundaram U
    Dig Dis Sci; 2013 Mar; 58(3):660-7. PubMed ID: 23344966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of riboflavine uptake by Caco-2 human intestinal epithelial cells.
    Said HM; Ma TY
    Am J Physiol; 1994 Jan; 266(1 Pt 1):G15-21. PubMed ID: 8304455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-chain fatty acid (SCFA) uptake into Caco-2 cells by a pH-dependent and carrier mediated transport mechanism.
    Stein J; Zores M; Schröder O
    Eur J Nutr; 2000 Jun; 39(3):121-5. PubMed ID: 10918994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of monocarboxylate transport in human kidney HK-2 cells.
    Wang Q; Lu Y; Yuan M; Darling IM; Repasky EA; Morris ME
    Mol Pharm; 2006; 3(6):675-85. PubMed ID: 17140255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the existence of a distinct SO(4)(--)-OH(-) exchange mechanism in the human proximal colonic apical membrane vesicles and its possible role in chloride transport.
    Tyagi S; Kavilaveettil RJ; Alrefai WA; Alsafwah S; Ramaswamy K; Dudeja PK
    Exp Biol Med (Maywood); 2001 Nov; 226(10):912-8. PubMed ID: 11682697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enteropathogenic Escherichia coli inhibits butyrate uptake in Caco-2 cells by altering the apical membrane MCT1 level.
    Borthakur A; Gill RK; Hodges K; Ramaswamy K; Hecht G; Dudeja PK
    Am J Physiol Gastrointest Liver Physiol; 2006 Jan; 290(1):G30-5. PubMed ID: 16150873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riboflavin transport by rabbit renal brush border membrane vesicles.
    Yanagawa N; Jo OD; Said HM
    Biochim Biophys Acta; 1997 Dec; 1330(2):172-8. PubMed ID: 9408170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-kappaB pathway.
    Borthakur A; Saksena S; Gill RK; Alrefai WA; Ramaswamy K; Dudeja PK
    J Cell Biochem; 2008 Apr; 103(5):1452-63. PubMed ID: 17786924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Several phosphate transport processes are present in vascular smooth muscle cells.
    Hortells L; Guillén N; Sosa C; Sorribas V
    Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H448-H460. PubMed ID: 31886722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.