BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1902379)

  • 1. Use of fluorescence energy transfer to characterize the compactness of the constant fragment of an immunoglobulin light chain in the early stage of folding.
    Kawata Y; Hamaguchi K
    Biochemistry; 1991 May; 30(18):4367-73. PubMed ID: 1902379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unfolding and refolding of a type kappa immunoglobulin light chain and its variable and constant fragments.
    Tsunenaga M; Goto Y; Kawata Y; Hamaguchi K
    Biochemistry; 1987 Sep; 26(19):6044-51. PubMed ID: 3120770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The colicin E1 insertion-competent state: detection of structural changes using fluorescence resonance energy transfer.
    Steer BA; Merrill AR
    Biochemistry; 1994 Feb; 33(5):1108-15. PubMed ID: 8110742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ricin-membrane interaction: membrane penetration depth by fluorescence quenching and resonance energy transfer.
    Ramalingam TS; Das PK; Podder SK
    Biochemistry; 1994 Oct; 33(40):12247-54. PubMed ID: 7918445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of amino-terminal residues in the folding of the constant fragment of the immunoglobulin light chain.
    Goto Y; Hamaguchi K
    Biochemistry; 1987 Apr; 26(7):1879-84. PubMed ID: 3109473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ammonium sulfate on the unfolding and refolding of the variable and constant fragments of an immunoglobulin light chain.
    Goto Y; Ichimura N; Hamaguchi K
    Biochemistry; 1988 Mar; 27(5):1670-7. PubMed ID: 3130099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modification of tryptophan residues and stability changes in proteins.
    Okajima T; Kawata Y; Hamaguchi K
    Biochemistry; 1990 Oct; 29(39):9168-75. PubMed ID: 2125474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unfolding and refolding of the constant fragment of the immunoglobulin light chain containing an intramolecular mercury bridge.
    Goto Y; Hamaguchi K
    J Biochem; 1986 May; 99(5):1501-11. PubMed ID: 3086308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unfolding and refolding of the reduced constant fragment of the immunoglobulin light chain. Kinetic role of the intrachain disulfide bond.
    Goto Y; Hamaguchi K
    J Mol Biol; 1982 Apr; 156(4):911-26. PubMed ID: 6811754
    [No Abstract]   [Full Text] [Related]  

  • 10. Spatial relationship between a fast-reacting thiol and a reactive lysine residue of myosin subfragment 1.
    Takashi R; Muhlrad A; Botts J
    Biochemistry; 1982 Oct; 21(22):5661-8. PubMed ID: 6216915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the intrachain disulfide bond in the conformation and stability of the constant fragment of the immunoglobulin light chain.
    Goto Y; Hamaguchi K
    J Biochem; 1979 Nov; 86(5):1433-41. PubMed ID: 118170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein compactness measured by fluorescence resonance energy transfer. Human carbonic anhydrase ii is considerably expanded by the interaction of GroEL.
    Hammarstrom P; Persson M; Carlsson U
    J Biol Chem; 2001 Jun; 276(24):21765-75. PubMed ID: 11278767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation and stability of the constant fragment of the immunoglobulin light chain containing an intramolecular mercury bridge.
    Goto Y; Hamaguchi K
    Biochemistry; 1986 May; 25(10):2821-8. PubMed ID: 3087410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence resonance energy transfer analysis of apolipoprotein E C-terminal domain and amyloid beta peptide (1-42) interaction.
    Phu MJ; Hawbecker SK; Narayanaswami V
    J Neurosci Res; 2005 Jun; 80(6):877-86. PubMed ID: 15880461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid binding-induced conformational changes in the N-terminal domain of human apolipoprotein E.
    Fisher CA; Ryan RO
    J Lipid Res; 1999 Jan; 40(1):93-9. PubMed ID: 9869654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence energy transfer distance measurements using site-directed single cysteine mutants. The membrane insertion of colicin A.
    Lakey JH; Baty D; Pattus F
    J Mol Biol; 1991 Apr; 218(3):639-53. PubMed ID: 2016750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of an unfolding intermediate and kinetic analysis of guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide.
    Steer BA; Merrill AR
    Biochemistry; 1997 Mar; 36(10):3037-46. PubMed ID: 9062135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of fluorescence resonance energy transfer to estimate intramolecular distances in the Msx-1 homeodomain.
    Isaac VE; Patel L; Curran T; Abate-Shen C
    Biochemistry; 1995 Nov; 34(46):15276-81. PubMed ID: 7578143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence energy transfer indicates similar transient and equilibrium intermediates in staphylococcal nuclease folding.
    Nishimura C; Riley R; Eastman P; Fink AL
    J Mol Biol; 2000 Jun; 299(4):1133-46. PubMed ID: 10843864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid association-induced N- and C-terminal domain reorganization in human apolipoprotein E3.
    Narayanaswami V; Szeto SS; Ryan RO
    J Biol Chem; 2001 Oct; 276(41):37853-60. PubMed ID: 11483594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.